4H-SiC功率器件具有独特的高压、高频、高温特性,有着巨大的应用潜力。[1 – 3 ] 4H-SiC肖特基势垒二极管(SBD)由于其单极导电模式,广泛应用于高频领域。然而,较大的漏电流限制了它的击穿性能和高压应用。[4 – 6 ] 4H-SiC P–I–N二极管由于其双极导电模式,广泛应用于大功率场合。[7 – 9 ] 然而,较差的反向恢复特性限制了它在高频领域的应用。4H-SiC合并P–I–N肖特基(MPS)二极管是一种很有前途的器件,它将肖特基和PN结集成在一个芯片上,实现了优异的击穿性能和快速的反向恢复特性。[10 – 14 ]
明确研究了直径 400 μ m 的中子辐照 (NI) GaN 肖特基势垒二极管 (SBD) 的温度相关电特性。根据 CV 测量,与原始样品相比,NI 二极管的电子浓度明显下降,表明存在热增强载流子去除效应。中子辐照会导致明显的肖特基势垒高度不均匀性,这可以通过双势垒模型进行研究。数据表明,中子辐照会对漏电流以及低频噪声水平产生微小但可测量的抑制。尽管发现了新的深能级陷阱,但温度相关的电学结果表明 GaN SBD 具有出色的抗中子辐照性能和在极端工作温度下的稳定性。
开发了具有平面电极排列的小型硅肖特基二极管 (0.8x0.8x0.4 mm 3 ) 芯片 (PSD),用作温度传感器,在压力传感器的工作条件下工作。PSD 芯片的正向 IV 特性由 Mo 和 n-Si (ND = 3 × 10 15 cm -3 ) 之间的势垒决定。在电源电流 IF = 1 mA 时,实现了正向电压 UF = 208 ± 6 mV 和温度系数 TC = - 1.635 ± 0.015 mV/⁰C(线性度 k T <0.4%,温度范围为 - 65 至 +85 ⁰C)。由于芯片 PSD 包含沿阳极周边的两个 p 型保护环结构,因此反向 IV 特性具有高击穿电压 U BR > 85 V 和低漏电流 IL < 5 μA(25 ⁰C 时)和 IL < 130 μA(85 ⁰C 时)(UR = 20 V)。证明了 PSD 芯片适用于从 - 65 到 +115 ⁰C 的更宽温度范围。温度传感器的独立芯片 PSD 位于距离压力传感器芯片不到 1.5 毫米的位置。PSD 芯片传输输入数据,以通过 ASIC 对压力传感器误差进行温度补偿并进行直接温度测量。关键词:温度传感器、肖特基二极管、Mo/Si-n 屏障、保护环、压力传感器。
摘要 — Ga 2 O 3 的低热导率可以说是 Ga 2 O 3 功率和射频器件最严重的问题。尽管进行了许多模拟研究,但是还没有关于大面积封装 Ga 2 O 3 器件热阻的实验报告。这项工作通过展示 15-A 双面封装 Ga 2 O 3 肖特基势垒二极管 (SBD) 并测量其在底部和结侧冷却配置下的结到外壳热阻 (R θ JC) 来填补这一空白。R θ JC 特性基于瞬态双界面法,即 JEDEC 51-14 标准。结冷和底部冷却的 Ga 2 O 3 SBD 的 R θ JC 分别为 0.5 K/W 和 1.43 K/W,前者的 R θ JC 低于同等额定值的商用 SiC SBD。这种低 R θ JC 归因于直接从肖特基结而不是通过 Ga 2 O 3 芯片进行散热。R θ JC 低于商用 SiC 器件,证明了 Ga 2 O 3 器件在高功率应用中的可行性,并表明了适当封装对其热管理的重要性。索引术语 — 超宽带隙、氧化镓、封装、肖特基势垒二极管、热阻。
意大利微电子与微系统研究所 (CNR_IMM),第 VIII 大街,5 号工业区,95121 卡塔尼亚,意大利摘要研究了在重掺杂(ND >10 19 cm -3 )n 型磷注入碳化硅 (4H-SiC) 上形成的 Ni 肖特基势垒的电行为,重点研究了正向和反向偏压下的电流传输机制。肖特基二极管的正向电流-电压特性表明,主要的电流传输是热电子场发射机制。另一方面,反向偏压特性不能用独特的机制来描述。事实上,在中等反向偏压下,注入引起的损伤是导致漏电流温度升高的原因,而随着偏压的增加,纯场发射机制趋近于。讨论了重掺杂层上的金属/4H-SiC 接触在实际器件中的潜在应用。关键词:4H-SiC,电气特性,电流传输,肖特基器件
这是作者的同行评审并被接受的手稿。但是,一旦编辑和排版完成,记录的在线版本将与此版本不同。
β-Gallium氧化物(β-GA 2 O 3)是一种宽带gap的半子导管,具有潜在的高频和高功率设备。[1 - 3]在Ga 2 O 3的五个多晶型物中,β -ga -ga 2 O 3是最稳定的。[4]它具有单斜结构,属于c 2 / m的空间组。[5]为简单起见,ga 2 o 3表示以下文本中的β -ga 2 o 3。随着GA 2 O 3外延技术的发展,两英寸的GA 2 O 3底物已商业化,[6],使用SN或SI的N型掺杂技术已经成熟。[1] GA 2 O 3设备织物和P型掺杂技术是当前GA 2 O 3研究中的两个主要问题。很难以纯GA 2 O 3结晶形式分离不同的相。[7]因此,模拟和填充已被用于预测GA 2 O 3晶体和降低特性。例如,他等人。通过密度功能理论(DFT)计算了频带结构。[5] Osipov等。计算了结构和弹性塑性特性,包括杨的模量和线性可压缩性。但是,直到现在,基于有限元方法的GA 2 O 3设备模拟已经稀缺了,这主要是因为GA 2 O 3不是Ma-Jor设备仿真软件中良好的半导体材料,并且宽带式半径模拟的模拟很难融合。[9]
本文的主要贡献是对不同的提取方法进行了比较研究,并在很大的温度范围内进行了测试(从极低的温度 100 K 到室温 300 K)。更准确地说,已经开发了四种技术来解决这个问题,例如 Cheung [ 1 ]、PSO、ABC 和 DE。关于所使用的启发式技术,PSO 算法最初模仿生物的社会行为和运动,例如一群鸟或一群鱼。同时,ABC 算法模拟了自然界中蜜蜂的觅食行为。而最后一种算法,即 DE,是一种基于种群的算法,旨在解决实际的优化问题。该算法需要四个主要步骤,例如初始化、突变、重组和选择。有关这些算法的更多详细信息,请参阅参考文献 [ 5、11、12 ]。
包括GAN,INN,ALN和ZnO的极性 - 肺导体的非中心对称晶体结构在研究了其菌株诱导的纳米能产生的潜力方面对科学共识感兴趣。耦合的半导体和压电性能产生了一个压电电源,可调节跨其异质结构界面的电荷传输。通过使用导电性原子显微镜,我们研究了在钼(MO)底物上生长的α纳米线(NWS)中产生的压平作效应的机制。通过使用PT – IR探针在NWS/MO结构上施加外部偏置和力,可以调节跨两个相邻的Schottky连接的电荷转运,这是由于明显的Schottky屏障高度(SBHS)的变化,而Schottky屏障高度(SBHS)是由于应变诱导的压电电位而导致的。对于背景力,我们测量了SBH的增加为98.12 MeV,该背景力对应于SBH变化∂ϕ∂F为6.24 MeV/nn,对于半导体/Ti/Mo界面。SBH调制负责对压电效应,通过测量从室温到398 K的温度依赖性I – V曲线进行进一步研究。从Algan NWS/Mo棚的独特结构中获得的见解,这些见解是在Algan/Mo Shed的独特结构上,对Metal-Sendoctor interface的电子特性以及Algan n Nw nw nw nw piquzoe nw pique的电子特性的启发光电子,传感器和能源产生应用。