图3.1显示了Gen-3 SIC SBD的原理结构,这是Sanan半导体提供的最新一代SIC二极管。该设备结合了一个金属半导体连接,称为Schottky屏障,而不是表征标准SI二极管的传统P-N结。shottky屏障是在肖特基金属和轻微掺杂的N型外延之间形成的。基板的特征是高度掺杂的N型SIC晶圆,可提供机械稳定性。当应用正向电压时,电子是多数电载体,导致单极电流。此外,由于活动区域中存在几个P+岛,该设备在电涌操作过程中作为PN二极管行为,并产生额外的电流流动。此设计可防止高电压下降,这将带来二极管的破坏。
β-Gallium氧化物(β-GA 2 O 3)是一种宽带gap的半子导管,具有潜在的高频和高功率设备。[1 - 3]在Ga 2 O 3的五个多晶型物中,β -ga -ga 2 O 3是最稳定的。[4]它具有单斜结构,属于c 2 / m的空间组。[5]为简单起见,ga 2 o 3表示以下文本中的β -ga 2 o 3。随着GA 2 O 3外延技术的发展,两英寸的GA 2 O 3底物已商业化,[6],使用SN或SI的N型掺杂技术已经成熟。[1] GA 2 O 3设备织物和P型掺杂技术是当前GA 2 O 3研究中的两个主要问题。很难以纯GA 2 O 3结晶形式分离不同的相。[7]因此,模拟和填充已被用于预测GA 2 O 3晶体和降低特性。例如,他等人。通过密度功能理论(DFT)计算了频带结构。[5] Osipov等。计算了结构和弹性塑性特性,包括杨的模量和线性可压缩性。但是,直到现在,基于有限元方法的GA 2 O 3设备模拟已经稀缺了,这主要是因为GA 2 O 3不是Ma-Jor设备仿真软件中良好的半导体材料,并且宽带式半径模拟的模拟很难融合。[9]
1 paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心
明确研究了直径 400 μ m 的中子辐照 (NI) GaN 肖特基势垒二极管 (SBD) 的温度相关电特性。根据 CV 测量,与原始样品相比,NI 二极管的电子浓度明显下降,表明存在热增强载流子去除效应。中子辐照会导致明显的肖特基势垒高度不均匀性,这可以通过双势垒模型进行研究。数据表明,中子辐照会对漏电流以及低频噪声水平产生微小但可测量的抑制。尽管发现了新的深能级陷阱,但温度相关的电学结果表明 GaN SBD 具有出色的抗中子辐照性能和在极端工作温度下的稳定性。
意大利微电子与微系统研究所 (CNR_IMM),第 VIII 大街,5 号工业区,95121 卡塔尼亚,意大利摘要研究了在重掺杂(ND >10 19 cm -3 )n 型磷注入碳化硅 (4H-SiC) 上形成的 Ni 肖特基势垒的电行为,重点研究了正向和反向偏压下的电流传输机制。肖特基二极管的正向电流-电压特性表明,主要的电流传输是热电子场发射机制。另一方面,反向偏压特性不能用独特的机制来描述。事实上,在中等反向偏压下,注入引起的损伤是导致漏电流温度升高的原因,而随着偏压的增加,纯场发射机制趋近于。讨论了重掺杂层上的金属/4H-SiC 接触在实际器件中的潜在应用。关键词:4H-SiC,电气特性,电流传输,肖特基器件
包括GAN,INN,ALN和ZnO的极性 - 肺导体的非中心对称晶体结构在研究了其菌株诱导的纳米能产生的潜力方面对科学共识感兴趣。耦合的半导体和压电性能产生了一个压电电源,可调节跨其异质结构界面的电荷传输。通过使用导电性原子显微镜,我们研究了在钼(MO)底物上生长的α纳米线(NWS)中产生的压平作效应的机制。通过使用PT – IR探针在NWS/MO结构上施加外部偏置和力,可以调节跨两个相邻的Schottky连接的电荷转运,这是由于明显的Schottky屏障高度(SBHS)的变化,而Schottky屏障高度(SBHS)是由于应变诱导的压电电位而导致的。对于背景力,我们测量了SBH的增加为98.12 MeV,该背景力对应于SBH变化∂ϕ∂F为6.24 MeV/nn,对于半导体/Ti/Mo界面。SBH调制负责对压电效应,通过测量从室温到398 K的温度依赖性I – V曲线进行进一步研究。从Algan NWS/Mo棚的独特结构中获得的见解,这些见解是在Algan/Mo Shed的独特结构上,对Metal-Sendoctor interface的电子特性以及Algan n Nw nw nw nw piquzoe nw pique的电子特性的启发光电子,传感器和能源产生应用。
摘要 — Ga 2 O 3 的低热导率可以说是 Ga 2 O 3 功率和射频器件最严重的问题。尽管进行了许多模拟研究,但是还没有关于大面积封装 Ga 2 O 3 器件热阻的实验报告。这项工作通过展示 15-A 双面封装 Ga 2 O 3 肖特基势垒二极管 (SBD) 并测量其在底部和结侧冷却配置下的结到外壳热阻 (R θ JC) 来填补这一空白。R θ JC 特性基于瞬态双界面法,即 JEDEC 51-14 标准。结冷和底部冷却的 Ga 2 O 3 SBD 的 R θ JC 分别为 0.5 K/W 和 1.43 K/W,前者的 R θ JC 低于同等额定值的商用 SiC SBD。这种低 R θ JC 归因于直接从肖特基结而不是通过 Ga 2 O 3 芯片进行散热。R θ JC 低于商用 SiC 器件,证明了 Ga 2 O 3 器件在高功率应用中的可行性,并表明了适当封装对其热管理的重要性。索引术语 — 超宽带隙、氧化镓、封装、肖特基势垒二极管、热阻。
摘要 — 超宽带隙氧化镓 (Ga 2 O 3 ) 器件最近已成为电力电子领域的有希望的候选者;然而,Ga 2 O 3 的低热导率 (k T ) 引起了人们对其电热稳定性的严重担忧。这项工作首次实验演示了采用底部冷却和双面冷却配置封装的大面积 Ga 2 O 3 肖特基势垒二极管 (SBD),并首次表征了这些封装 Ga 2 O 3 SBD 的浪涌电流能力。与普遍看法相反,采用适当封装的 Ga 2 O 3 SBD 表现出很高的浪涌电流能力。具有 3×3 mm 2 肖特基接触面积的双面冷却 Ga 2 O 3 SBD 可以承受超过 60 A 的峰值浪涌电流,峰值浪涌电流与额定电流之比优于同等额定值的商用 SiC SBD。这种高浪涌电流的关键促成机制是导通电阻的温度依赖性小,这大大降低了热失控,以及双面冷却封装,其中热量直接从肖特基结提取,不需要通过低 k T 块状 Ga 2 O 3 芯片。这些结果消除了有关 Ga 2 O 3 功率器件电热耐用性的一些关键担忧,并体现了其芯片级热管理的重要性。1
基于Gan Schottky屏障二极管(SBD),使用反行二极管对(APDP)的频率三副制作者以3.6 GHz的输出频率进行了建模和建模。此外,明确研究并比较了两种连接方案,即APDP系列APDP和Shunt APDP三倍器。与分流APDP三倍器相比,系列APDP三重序列的输出功率更高-0.14 dbm,最小转化率较小26.9 dB。提出了两种类型三级游戏的精确紧凑型模型,以验证三倍体的产生功率和性能的产生。在紧凑的模型中,从i - v特征和宽带小信号s参数中提取了SBD的非线性香料参数和二极管对的寄生参数。三元器的输入和输出网络被取消安装,以确保谐波模拟的准确性。APDP作为频率三倍器的出色性能和相应的模型为设计RF乘数提供了一种实用的选择。
摘要:二硫化钼(MoS 2 )因其较大的带隙、良好的机械韧性和稳定的物理性能而受到研究者的广泛关注,成为下一代光电器件的理想材料。但较大的肖特基势垒高度( Φ B )和接触电阻是阻碍大功率 MoS 2 晶体管制备的障碍。详细研究了具有两种不同接触结构的 MoS 2 晶体管的电子传输特性,包括铜(Cu)金属-MoS 2 通道和铜(Cu)金属-TiO 2 -MoS 2 通道。通过调整金属和 MoS 2 之间的 TiO 2 夹层的厚度来优化接触。具有 1.5 nm 厚 TiO 2 层的金属-夹层-半导体(MIS)结构具有较小的肖特基势垒,为 22 meV。结果为设计 MIS 接触和界面以改善晶体管特性提供了参考。
