免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
与小型SAT兼容的系统为4千克质量,10U体积和15W以下的功率。这将通过在Terahertz频率上工作的基于Schottky的杂尼光谱仪来解决这一问题,并在室温下以较大的瞬时带宽和高光谱分辨率进行操作。在保持最先进的性能的同时,满足所有条件的两个主要关键系统参数包括:1)混合器的配置,其外在层定义,匹配的传输线和外壳,2)本地振荡器子系统部分及其校准。表I为当前的设计工作提供了上下文。最佳记录的系统[2]和[3]使用基本平衡的混合器,分别在2 THz处使用5 MW和10-12 MW的局部振荡器功率,可舒适地由二氧化碳泵送的甲醇气体激光器提供。基本混合器的选择是合理的,因为它们在理论上可以比次谐波混合器达到更好的噪声性能[4]。但是,亚谐波拓扑通过将其工作频率降低了两个,从而放松了局部振荡器(LO)源。此配置还避免了使用宽敞的二氧化碳激光器的要求,该激光器远非满足质量/音量/功率标准,并且无法通过Schottky Local振荡器源可以轻松实现光谱可调性[5] [6]。提议的接收器利用了混合器的平面Schottky二极管,并乘以LO。
I. 介绍 Zr/O/W(100) 肖特基电子发射体以其高亮度和良好的发射稳定性而闻名 [1],广泛应用于电子显微镜和电子束光刻系统。肖特基发射体由单晶钨 (100) 尖端组成,该尖端点焊在钨加热丝上,可加热至 1800 K。我们正在为并行电子光刻系统开发直径为 1 毫米的肖特基发射体的微型版本。发射体尖端相对于电子柱中各个电极的对准非常关键。由于热机械原因,尖端在 x − y − z 方向上的位置会随时间而变化,这也会改变电子发射和电子光学。对于数百个发射器的阵列,必须将阵列中各个发射器之间的电子光学特性差异降至最低。在标准肖特基发射器中,尖端在其使用寿命期间在 z 方向上位移 50 µ m。为了补偿这种位移,我们建议使用硅橡胶室温硫化 (RTV) 566 对尖端进行原位位置对准。RTV 566 在 − 115 ◦ C–260 ◦ C 范围内具有良好的热稳定性、低排气性以及与不同材料组良好的粘合性 [2]。RTV 566 广泛应用于各种机械和电子工程应用,如汽车加热软管、芯片键合、太阳能电池、空间应用和火花塞帽。控制 z 轴运动的拟议设计示意图如图所示。1.在
npn -pnp- junctions-junctions-junctions-junctions-formelent-rescrent方程 - CE的输入和输出特征,CB CC--H参数模型,EBERS MOLL模型-Mesfet-Mesfet,Schottky Barrier Diode-Zener diode-Zener diode-diode-pin-pin diode-pin diode-diode-diode-droactor diode。III单元现场效应晶体管和电源设备6
超宽的带隙半导体β加氧化物(β -GA 2 O 3)使电子设备的低传导损失和高功率有望。但是,由于β -GA 2 O 3的天然较差的导热率,其功率设备具有严重的自加热效果。为了克服这个问题,我们强调了使用TCAD模拟和实验的设备结构对β -GA -GA 2 O 3 Schottky屏障二极管(SBD)的峰值温度的影响。在TCAD中模拟了SBD拓扑,包括β -GA 2 O 3的晶体取向,Schottky金属,阳极面积和厚度的工作功能,表明β -GA -GA 2 O 3的厚度在降低二极管峰值温度方面起着关键作用。因此,我们制造了具有三个不同厚度外延层和五个不同厚度底物的β -GA 2 O 3 SBD。使用红外热成像摄像头测量二极管的表面温度。实验结果与模拟结果一致。因此,我们的结果为高功率β -GA -GA 2 O 3二极管提供了新的热管理策略。
Varactor Tuning Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Multiplier Step Recovery Diodes . . . . . . . . . . . . . . . . . . . 17 PIN Switch and Attenuator Diodes . . . . . . . . . . . . 18 – 20 PIN Limiter Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 – 21 Schottky Mixer and Detector Diodes . . . . . . . . . . 21 – 25 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 – 27 Digital Attenuators . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Integrated IC & Modules . . . . . . . . . . . . . . . . . . . . 27 Power Dividers/Combiners . . . . . . . . . . . . . . . 27 – 28 Phase Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 – 31
CDTE薄膜太阳能电池由于电荷损失而导致背部接触材料的工作功能不匹配而导致后部接触的功率损失。因此,有必要通过创建大型肖特基屏障来找到适当的背接触材料,这些材料不会降低细胞性能。用于降低屏障高度的既定策略之一是将具有高功能功能的金属沉积到CDTE背面。在这项研究中,我们使用了金属工作函数的普遍报道值的平均值来研究各种金属(用作返回接触)对CDTE太阳能电池性能的影响。没有任何其他策略来克服肖特基触点,当使用低于5.0 eV的金属时,太阳能电池的效率会严重降低。诸如PT,PD和AU等具有很高工作功能的金属产生的细胞效率高达18.6%,但较低的工作功能金属(如AL)几乎将效率完全降低到低于0.5%。我们的发现表明,Schottky屏障主要影响VOC和FF,因为JSC仅显示略有减少。受到极端工作温度的影响,效率在很大程度上随温度而降低。对于表现最高的金属,已获得-0.3至-0.45/ o的温度系数。
高性能。因此,原定于 2021 年底进行的工艺冻结被决定推迟两年,以尝试了解基线 1 的 HTRB 性能下降的根本原因,并通过重大工艺变更优化工艺。肖特基性能下降的主要根本原因是外延界面处栅极脚附近的电场峰值非常高。因此,工艺优化的重点放在使用小场板的电场工程上。为了实现这一目标,必须评估和实施一种新的栅极方法。需要两次工艺迭代来定义最终工艺,并且可以根据 ESA 计划中的 HTOL 和 HTRB 可靠性结果在 2023 年底冻结 GH10-10 技术。采用新的栅极工艺,肖特基稳定性可以显着提高,最高 60V 时不会出现性能下降。
电视:30,000个/月MOSFET/IGBT:10,500 PC/月EPI:60,000 PCS/月Schottky:45,000 PCS/月电视eSD阵列:5,000 PCS/月份底盘:5,000 PCS/月/月/月弗雷德:5,000 PCS/月/月LVF Rectifier:5,000 PCS PCS PCS PCS PCS PCS PCS PCS PCS/DIV
1。简介:尤其是氮化物的独特固有特性,尤其是甘恩捕获了未来MM - 波应用的半导体市场[1]。表现出高载体迁移率以及高饱和速度的能力,使基于GAN的设备适合MM - 波动应用[2]。所声称的基于GAN的设备的明显高性能[3] [4]实际上取决于各种因素。这些包括EPI - 层堆栈的质量[5] [6],以及针对欧米克和肖特基触点实施的质量和金属方案[7] [8]。EPI - 层工程专注于最大程度地减少晶界和外延缺陷,以提高RF性能[6] [9]。另一方面,欧姆金属工程专门集中于降低接触电阻,以兼容高速操作[7] [10],而不是Schottky接触工程,该联络工程具有特定的目标,可以实现下门