变换光学程序是精确的——在底层流形变形下,麦克斯韦方程的不变性为电磁场的实际成形规定了一个精确的介质配方。为什么该程序在电磁学中如此独特地成功仍然有些不清楚(尽管我们有一个极好的候选猜想,它简明扼要地捕捉了电磁学的数学特征,而这些特征不会延续到声学和水波等)。因此,如果我们希望开发一种用于变换介质的通用方法,我们必须从精确的场方程下降到与其他物理理论具有共同特征的更近似的理论。最有希望的攻击水平似乎是在射线水平上。射线行为的处方开发了给定指数分布的射线。然而,对于给定的射线变形,找到指数分布的逆问题只能针对保角变换给出。尽管有这种看似严格的限制,但当变换到以各向异性度量为特征的空间时,可以进行显著的推广。然后,我们可以对任何所需的射线变形进行反演,原则上适用于广泛的物理系统,例如声学、薛定谔波、热波、水波等。事实上,可以解决任何情况,其中各向异性“指数”可以定义为通量与能量密度的有向比。几何公式化也意味着我们不再受底层欧几里得空间的束缚,例如,可以使用我们的方法来设计球体上的斗篷。我们的方法还定量地访问所需变形与诱导黎曼曲率之间的关系,进而访问制造黑洞、白洞、聚光器和许多其他有用设备的标准。这次演讲将具有普遍的吸引力,并将设定历史性斗篷范例的背景,例如 Pendry/Leonhardt 空间斗篷,当然还有时空斗篷。
• 员工:德克萨斯大学 MD 安德森癌症中心,我担任该中心治疗学发现部门的副总裁兼临床开发主管,该部门对 DDR 和其他抑制剂有商业利益(IACS30380/ART0380 已授权给 Artios)• 担任以下公司的顾问:AbbVie、Acrivon、Adagene、Almac、Aduro、Amphista、Artios、Astex、AstraZeneca、Athena、Atrin、Avenzo、Avoro、Axiom、Baptist Health Systems、Bayer、Beigene、BioCity Pharma、Blueprint、Boxer、Bristol Myers Squibb、C4 Therapeutics、Calithera、Cancer Research UK、Carrick Therapeutics、Circle Pharma、Clovis、Cybrexa、Daiichi Sankyo、Dark Blue Therapeutics、Diffusion、Duke Street Bio、858 Therapeutics、EcoR1 Capital、Ellipses Pharma、EMD Serono、 Entos、F-Star、Genesis Therapeutics、Genmab、Glenmark、GLG、Globe Life Sciences、GSK、Guidepoint、Ideaya Biosciences、Idience、Ignyta、I-Mab、ImmuneSensor、Impact Therapeutics、Institut Gustave Roussy、Intellisphere、Jansen、Kyn、MEI pharma、Mereo、Merck、Merit、Monte Rosa Therapeutics、Natera、Nested Therapeutics、Nexys、Nimbus、Novocure、Odyssey、OHSU、OncoSec、Ono Pharma、Onxeo、PanAngium Therapeutics、Pegascy、PER、辉瑞、Piper-Sandler、Pliant Therapeutics、Prolynx、Radiopharma Theranostics、Repare、resTORbio、罗氏、Ryvu Therapeutics、SAKK、赛诺菲、Schrodinger、施维雅、 Synnovation、Synthis Therapeutics、Tango、TCG Crossover、TD2、Terremoto Biosciences、Tessellate Bio、Theragnostics、Terns Pharmaceuticals、Tolremo、Tome、Thryv Therapeutics、Trevarx Biomedical、Varian、Veeva、Versant、Vibliome、Voronoi Inc、Xinthera、Zai Labs 和 ZielBio • 资助/研究支持来自:Acrivon、Artios、AstraZeneca、Bayer、Beigene、BioNTech、Blueprint、BMS、Boundless Bio、Clovis、Constellation、Cyteir、Eli Lilly、EMD Serono、Forbius、F-Star、GlaxoSmithKline、Genentech、Haihe、Ideaya ImmuneSensor、Insilico Medicine、Ionis、Ipsen、Jounce、Karyopharm、KSQ、Kyowa、Merck、Mirati、Novartis、Pfizer、Ribon Therapeutics、Regeneron、Repare、Rubius、Sanofi、Scholar Rock、Seattle Genetics、Tango、Tesaro、Vivace 和 Zenith • 股东:Seagen
* 共同通讯作者:Juliana Navarro-Yepes,博士,德克萨斯大学 MD 安德森癌症中心实验放射肿瘤学系,6565 MD Anderson Blvd.,休斯顿,德克萨斯州 77030,美国。电话:785-979-2300。junay14@gmail.com(现地址:Systemic Bio™ 3D Systems 公司。2450 Holcombe Blvd, Suite A, Houston, TX, 77021),Khandan Keyomarsi,博士,德克萨斯大学 MD 安德森癌症中心实验放射肿瘤学系,6565 MD Anderson Blvd.,休斯顿,德克萨斯州 77030,美国。电话:832-628-8841。kkeyomar@mdanderson.org。利益冲突:J. Navarro-Yepes:无。 NM Kettner:无。X. Rao:无。CS Bishop:无。T. Bui:无。HF Wingate:无。AS Raghavendra:无。Y. Wang:无。J. Wang:无。A. Sahin:无。 F. Meric-Bernstam:AbbVie、Aduro BioTech Inc.、Aileron Therapeutics Inc.、Alkermes、阿斯利康、Black Diamond、拜耳医疗制药、Biovica、Calithera Biosciences Inc.、Curis Inc.、CytomX Therapeutics Inc.、第一三共株式会社、DebioPharm、Ecor1 Capital、eFFECTOR Therapeutics、卫材、F. Hoffman-La Roche Ltd.、FogPharma、GT Apeiron、Genentech Inc.、Guardant Health Inc.、Harbinger Health、IBM Watson、Immunomedics、Infinity Pharmaceuticals、Inflection Biosciences、Jackson Laboratory、Karyopharm Therapeutics、Kolon Life Science、Klus Pharma、Lengo Therapeutics、Loxo Oncology、Menarini Group、Mersana Therapeutics、诺华、OnCusp Therapeutics、OrigiMed、PACT Pharma、Parexel International、辉瑞公司、Protai Bio Ltd、Puma Biotechnology Inc.、Samsung Bioepis、赛诺菲、Seattle Genetics Inc.、Silverback Therapeutics、Spectrum Pharmaceuticals、Taiho Pharmaceutical Co.、武田制药、Tallac Therapeutics、Tyra Biosciences、Xencor、Zentalis、Zymeworks KK Hunt:Armada Health、阿斯利康、Cairn Surgical、礼来公司、Lumicell。S. Damodaran:EMD Serono、Guardant Health、诺华、辉瑞、Sermonix、Taiho。D. Tripathy:阿斯利康、葛兰素史克、吉利德、诺华、OncoPep、辉瑞、Polyphor、Personalis、Puma Biotechnology、Sermonix、Stemline-Menarini。K. Keyomarsi:Apeiron、BluePrint、REPARE、Schrodinger 和诺华。
直到 1924 年,原子过程中能量守恒定律的严格有效性才受到严重质疑。当时,为了解决当时存在的光的波动性和粒子性之间的严重冲突,玻尔、克拉默斯和斯莱特提出了一个否定该定律的理论。该理论(我们将其称为 BKS 理论)假定,原子系统在激发态下会持续发射辐射场,而不是仅在系统跃迁到较低能量状态时才发射。如果辐射频率合适,落在第二个原子上的辐射场会使其有可能跃迁到更高能量状态。该理论认为第二个原子跃迁到更高能量状态和第一个原子跃迁到较低能量状态之间不存在巧合,但除了这个巧合问题之外,它得出的结果与其他辐射理论的结果一致。因此,新理论不保证单个原子过程的能量守恒,但当大量原子过程发生时,它保证了统计守恒。新理论提出后不久,Bothe 和 Geiger 以及 Compton 和 Simons 就用实验检验了其关于电子散射辐射的预测。两种情况下的结果都不利于新理论,并支持能量守恒。此后不久,海森堡和薛定谔发现了新的量子力学,并发展了这种理论,以便在不背离能量守恒的情况下摆脱波与粒子冲突的困境。因此,人们发现 BKS 理论与实验不一致,不再需要理论考虑,因此被抛弃了。R. Shankland 最近的一些实验工作改变了这种情况。Shankland 的实验以十年技术发展带来的更高精确度进行,他的结果与早期实验者的结果不一致。相反,他们不同意能量守恒定律,并要求他们的解释符合 BKS 理论。因此,物理学现在面临着必须做出重大改变的前景。
基础量子力学(BQM):11. 在量子力学的背景下解释算子、状态、特征值和特征函数这些术语(首先针对双态系统,然后扩展到具有连续特征值的系统),并确定物理量的期望值和不确定性。12. 确定给定势阱(例如无限势阱和屏障)中粒子的波函数,并列举其在技术中的应用示例(例如量子点显示器、存储设备)。13. 使用特征函数的正交性并对叠加中的量子系统进行基本分析。14. 讨论量子现象(例如量子叠加、波函数坍缩、量子隧穿和海森堡不确定性原理),并解释它们与我们对现实的感知的冲突。15. 使用氢原子的量子数:n、l、m 确定相应的特征函数(来自给定的表格)并解决相关的简单问题。课程内容 基础(FND) 波的性质 光速 叠加、衍射和干涉 原子和亚原子粒子 狭义相对论(SR) 参考系和伽利略变换 狭义相对论和洛伦兹变换的假设 长度收缩和时间膨胀 闵可夫斯基时空图 解决悖论 相对论动量、动能和能量 基础核物理(BNP) 放射性粒子(𝛼,𝛽 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 𝛾−𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) 核裂变和聚变 放射性 质能当量 医学应用和剂量 量子物理(QP) 黑体辐射物理量的量化光电效应康普顿散射和波长对的产生/湮没双缝实验戴维森-杰默实验波粒二象性氢原子(玻尔模型和原子光谱)基础量子力学(BQM)特征值、特征函数和算子两能级系统薛定谔方程和波函数概率(密度)无限和有限势阱(盒子中的粒子)量子谐振子势垒/台阶期望值和不确定性
量子时间演化的误差缓解和电路优化:理论和算法都柏林圣三一学院数学学院和 IBM 都柏林研究中心现招聘联合指导、全额资助的博士生。该博士生项目将涉及应用数值分析和数值 PDE 技术来解决量子计算中出现的数值挑战,即估计和优化量子时间演化中出现的误差。量子计算机在模拟与化学或材料科学相关的量子多体系统方面具有巨大潜力。相关波函数随时间的演化受薛定谔方程控制。一种常用的随时间演化薛定谔方程的技术是基于 Trotter-Kato 半群。此类方法的优点是,当应用于数值时,它们具有严格的误差界限。然而,由于我们需要执行的计算维度的增加,这方面的经典方法变得难以解决。克服此类方法中的维数灾难是量子计算机的潜在优势之一。近期的处理器可能将波函数在比传统方法高得多的维度上向前传播。然而,依靠 Trotter 公式在量子计算机上解决时间相关的薛定谔方程是一个挑战。由这些方法产生的量子电路很快变得非常“深”。这带来了新的计算挑战,因为量子计算会在计算中引入噪声,并且这种噪声会随着量子电路的深度而增加。我们将其与浅层电路缺乏“可表达性”的事实进行了对比。我们正在寻找一名博士生,应用数值分析和科学计算工具来克服这些问题。为了避免深层电路,建议使用基于物理学的 Galerkin 投影方案来将问题的规模缩小到不需要过深量子电路的规模。最近在文献中提出了一些这样的方案,但目前尚不存在对这些投影方法的误差进行适当严格的分析。这种分析将对将完整方程投影到较小子空间时产生的误差进行良好的估计,以便先验地预测方法的性能。此外,错误表示可以反馈到方法中
入学率上限:10名学生本课程涉及各种药物管理途径后,模型构建,数据分析和参数估计的药代动力学概念的基本方面。需要指导老师的许可。仅限于P3学生。请向Devanathan博士提交一段电子邮件,asd129@pitt.edu,以解释您的兴趣以及为什么要参加课堂。pharm 3034翻译研究学分的主题:1班级编号:29785协调员:P。Empey博士入学率上限:10个学生本课程的结构是专注于翻译调查的期刊俱乐部,并正在与Minnesota,North Carolina,north Carolina,in North Carolina和Pittsburgh共同提供1ST和2ND年度的学生,该课程将与三年级的学生一起参加。强调允许从临床前转换为临床研究的方法将在几个不同的治疗领域进行讨论,重点是药物测量,基因组学,生物标志物验证和药物发现。需要指导老师的许可。请向empey博士(pempey@pitt.edu)提交一段电子邮件,以解释您对翻译研究的兴趣以及为什么要参加课堂。该课程还包括主流网络分析和CADD软件的动手培训,例如Matlab的Symbiology,Tetrad,Schrodinger的药物发现软件包。这是PSP计划的强制性课程。该课程完全通过简短的视频和基于Web的家庭作业在线。PHARM 3068 Computational Systems Pharmacology Credits: 3 CLASS NUMBER: 30639 Coordinator: Dr. Z. Feng Enrollment Cap : 35 students This course will teach the fundamentals of computational systems pharmacology (CSP) modeling and their applications to study drug actions and rational development of new drugs through network analysis, Theoretical concepts pertaining to computational systems pharmacology, such as drug target identification and computer aided drug design (CADD), will被教导。Pharm 3302使用大型生物医学数据库学分进行研究:1班级编号:26733协调员:博伊斯博士入学率上限:35名学生本课程是核心数据科学方法的介绍,以查询大规模数据集的核心数据科学方法,主要侧重于关系数据库。学生将开发技能理解在临床信息系统,生物医学数据标准和术语以及管理和存储生物医学数据的策略中发现的数据。在某些平台(Stata,Sas,Python,R,Tableau)中对数据操作的知识;在课程入学之前,首选编程经验的基本统计课程和介绍性。
目标 • 增强物理学基础知识及其与机械工程流相关的应用。 • 让学生熟悉用于研究/确定材料各种性质的各种实验装置和仪器。 单元 I - 物质的力学和性质 9 基本定义 - 牛顿定律 - 力 - 解牛顿方程 - 约束和摩擦 - 圆柱和球坐标 - 势能函数 - 保守力和非保守力 - 中心力 - 角动量守恒 - 非惯性参考系 - 旋转坐标系 - 向心加速度和科里奥利加速度 - 弹性 - 应力-应变图 - 梁弯曲 - 悬臂凹陷 - 杨氏模量测定 - I 型梁。第二单元 - 晶体物理学 9 基础 – 晶格 - 对称操作和晶体系统 - 布拉维晶格 - 原子半径和填充率 - SC、BCC、FCC、HCP 晶格 - 米勒指数 - 晶体衍射 - 倒易晶格 - 解释衍射图案 - 晶体生长技术-切克劳斯基和布里奇曼,晶体缺陷。 第三单元 - 材料物理学 9 固溶体 - 休谟-罗瑟里规则 – 吉布斯相规则 - 二元相图 - 等温体系 - 连接线和杠杆规则 - 共晶、共析、包晶、包析、偏晶和同晶体系 - 微观结构的形成 - 均匀和非均匀冷却 – 成核 - 铁碳相图 - 共析钢 - 亚共析钢和过共析钢 – 扩散 - 菲克定律 – TTT 图。单元 IV - 工程材料与测试 9 金属玻璃 - 制备和性能 - 陶瓷 - 类型、制造方法和性能 - 复合材料 - 类型和性能 - 形状记忆合金 - 性能和应用 - 纳米材料 - 自上而下和自下而上的方法 - 性能 - 抗拉强度 - 硬度 - 疲劳 - 冲击强度 - 蠕变 - 断裂 - 断裂类型。 单元 V - 量子物理 9 黑体问题 - 普朗克辐射定律 - 光的二象性 - 德布罗意假设 - 物质波的性质 - 波包 - 薛定谔方程(时间相关和时间无关) - 玻恩解释(波函数的物理意义) - 概率流 - 算子形式(定性) - 期望值 - 不确定性原理 - 盒子中的粒子 - 特征函数和特征值 - 狄拉克符号(定性)。
• Adam Steinberg 教授被选为 AE 学院研究生项目的新副主席。他负责管理研究生项目、扩大咨询范围、审查课程并招募顶尖人才。他还因其在燃烧方面的杰出贡献而当选为燃烧研究所研究员。 • Joseph Oefelein 教授被选为 AE 学院本科生项目的副主席。在他的职位上,他负责管理咨询并支持本科生计划。 • George Kardomateas 教授因其在航空航天进步中的杰出工作而被美国机械工程师学会评选为 2022 年圣路易斯精神奖章获得者。 • Suresh Menon 教授因其在航空燃烧工程方面的杰出贡献而被授予 2023 年美国航空航天学会 (AIAA) 推进剂和燃烧奖。 • Timothy Lieuwen 教授和高级研究工程师 Benjamin Emerson 等凭借其论文《同时进行 OH、CH20 和近喷流动力学的流场成像》获得 AIAA 2022 年最佳论文奖。 • Vishal Acharya、Graeme Kennedy 和 Juergen Rauleder 被 AIAA 选为 2023 级副研究员 • Mitchell LR Walker II 教授兼 John W. Young 主席被任命为 AIAA 研究员。他是第 15 位获得这一顶级荣誉的技术教员。 • Dimitri Mavris 被任命为国际航空科学理事会 (ICAS) 主席。他的任期为两年,致力于执行 ICAS 任务。 • 陈永新教授及其团队凭借《具有树结构成本的多边际最优传输和薛定谔桥问题》的论文荣获工业与应用数学学会最佳论文奖。 • Stephen Ruffin 教授被选为佐治亚理工学院专业教育学术事务副院长。 • Wenting Sun 教授被燃烧研究所和爱思唯尔评选为 Hiroshi Tsuji 早期职业研究奖。该奖项授予在基础或应用燃烧科学方面表现卓越并在其领域取得进步的早期职业研究人员。 • John Christian 教授凭借《星际任务的导航和恒星识别》成为 2023 年 Canopus 星际写作杰出奖(出版短篇非小说类)提名作者之一。 • Marilyn Smith 教授被选为皇家航空学会 (RAeS) 2023 年兰彻斯特讲座主讲人。
通过 QASM 语言,这是 IBM Q Experience 团队发明的一种用于创建量子电路的语言。另一方面,第二种方法是编写 Python 代码并使用名为 QISKit [32] 的 Python 软件开发工具包 (SDK) 运行它们,它适用于所有类型的算法。因此,我们在本文中展示的工作是使用 QISKit 进行的。可通过云端公开访问的量子设备分别由 IBM Q 5 Yorktown (ibmqx2) 、IBM Q Burlington 、IBM Q 5 London 、IBM Q Essex 、IBM Q Vigo 和 IBM Q Ourense(六个 5 量子比特设备)以及 IBM Q 16 Melbourne 和 IBM Q Armonk(16 量子比特和 1 量子比特设备)表示。用于模拟的经典后端称为 IBMQ QASM 模拟器。所有后端都与一组由单量子比特旋转和相移门组成的量子门一起工作。所有其他单量子比特门(如 X、S、R z 等)一般都是由这三个门的序列构成的,它们与 CNOT 一起构成量子门的通用集。除了量子比特的数量之外,所提到的量子设备在量子比特连接或拓扑方面也有所不同,IBM Q Experience 将其称为设备的耦合图 [33]。在本文中,我们修改并在 IBM 量子计算机上实现了参考文献 [34] 中研究的量子算法,使用相位估计技术找到有限方阱势一维薛定谔方程的基态和第一激发态的能量特征值。我们使用试验波函数作为初始状态,并在位置和动量空间中将其离散化。我们还在希尔伯特空间中构建了时间演化矩阵,其中定义了计算基向量(即量子比特态)。然后,我们将时间演化电路应用于最初准备的寄存器,并使用相位估计方法获得包含能量的相位。我们表明,所提出的算法可以以合理的误差实现预期结果。除了众所周知的量子相位估计方案外,我们还讨论了迭代相位估计方法的实现,以减少电路尺寸和量子比特数,从而有效利用 IBM 量子计算资源。最重要的是,为了充分利用 5 量子比特 IBM 后端,我们通过选择迭代相位估计技术将电路尺寸从文献 [34] 中使用的 8 个量子比特缩短到 5 个。本文组织如下。第 3 节描述了基于相位估计方法的量子算法的步骤。要执行数字量子模拟,我们需要设计时间演化算子来找到系统的能量特征值。此外,坐标应该离散化,初始波函数在网格点上近似。我们还解释了本文使用的两种相位估计算法。在第 4 部分中,我们解释了如何为时间演化算符中的动能和势能项构造量子门。第 5 节给出了结果和讨论,第 6 节讨论了最后的评论。