解释了解波颗粒双重性的量子力学,量子力学的必要性探索亚原子颗粒的行为。Schroedinger的时间独立波方程,波函数的物理意义 - Schroedinger波方程的应用。了解正常光,激光及其应用的基本概念,并了解光纤,原理(TIR),数值孔径,光纤类型,STEP索引和分级索引纤维,光纤纤维中的衰减。应用:光纤通信系统,光纤传感器,医疗内窥镜检查。研究磁性和超导性的概念,Bohr Magneton,滞后性质,域结构,Meissner效应,超导体的类型,BCS理论和超导体的应用。了解电介质,极化及其类型的概念,内部场,克劳西乌斯 - 摩塞蒂方程,频率和温度对电介质及其应用的影响 - 压电电性,pyro-电动性和铁电性。了解半导体,类型,载体浓度,热敏电阻,霍尔效应,以及了解PN结构的概念,I-V特征,LED,太阳能电池和照片二极管。讨论纳米技术,制备技术和表征(XRD,SEM和TEM),CNT,并了解放射性及其应用的基础。
了解半导体,类型,载体浓度,热敏电阻,霍尔效应,以及了解PN结构的概念,I-V特征,LED,太阳能电池和照片二极管。解释了解波颗粒双重性的量子力学,量子力学的必要性探索亚原子颗粒的行为。Schroedinger的时间独立波方程,波函数的物理意义 - Schroedinger波方程的应用。了解正常光,激光及其应用的基本概念,并了解光纤,原理(TIR),数值孔径,光纤类型,STEP索引和分级索引纤维,光纤纤维中的衰减。应用:光纤通信系统,光纤传感器,医疗内窥镜检查。研究磁性和超导性的概念,Bohr Magneton,滞后性质,域结构,Meissner效应,超导体的类型,BCS理论和超导体的应用。了解介电,极化及其类型的概念,内部场,clausius- mossitti方程,频率和温度对电介质及其应用的影响 - 压电电力,pyro电力电力和铁电效率。讨论纳米技术,制备技术和表征(XRD,SEM和TEM),CNT,并了解放射性及其应用的基础。单位:1
在本文中,我们构建了一个可解的球形黑洞内部量子动力学玩具模型,该模型具有下降球形标量场激发。我们首先讨论了当关注深层内部区域 r ≪ M(包括奇点)时,如何使用无质量标量场的康托夫斯基-萨克斯解来模拟发射霍金辐射的实际黑洞的量子引力动力学的某些方面。此外,我们表明,在 r ≪ M 范围内,在合适的变量中,KS 模型在经典和量子层面上都变得精确可解。重新审视受圈量子引力启发的量子动力学。我们提出了一种自然的聚合物量化,其中旋转群轨道的面积 a 被量化。聚合物(或圈)动力学与远离奇点的薛定谔动力学密切相关,具有从聚合物处理中自然出现的连续极限形式。与质量相关的狄拉克可观测量被量化,并显示具有与所谓的 ϵ 扇区相关的无限退化。这些的适当连续叠加是基本希尔伯特空间中明确定义的分布,并满足连续薛定谔动力学。
波粒偶性;坐标和动量表示中的波函数;换向者和海森堡的不确定性原则;矩阵表示;狄拉克的胸罩和样式法; Schroedinger方程(时间依赖性和时间无关);特征值问题,例如粒子中的盒子,谐波振荡器等。 ;穿过障碍;运动中心的运动;轨道角动量,角动量代数,自旋;添加角动量;氢原子,自旋 - 轨道耦合,精细结构;时间独立的扰动理论和应用;变分方法; WKB近似;时间取决于扰动理论和费米的黄金法则;选择规则;半古典辐射理论; scatte,相移,部分波,天生近似的基本理论;相同的粒子,保利的排除原理,自旋统计量连接; rel Tiistic波粒偶性;坐标和动量表示中的波函数;换向者和海森堡的不确定性原则;矩阵表示;狄拉克的胸罩和样式法; Schroedinger方程(时间依赖性和时间无关);特征值问题,例如粒子中的盒子,谐波振荡器等。;穿过障碍;运动中心的运动;轨道角动量,角动量代数,自旋;添加角动量;氢原子,自旋 - 轨道耦合,精细结构;时间独立的扰动理论和应用;变分方法; WKB近似;时间取决于扰动理论和费米的黄金法则;选择规则;半古典辐射理论; scatte,相移,部分波,天生近似的基本理论;相同的粒子,保利的排除原理,自旋统计量连接; rel Tiistic
摘要 量子生物学是基础物理学和生物学交叉领域的新兴领域,有望为生物秩序的性质和起源提供新的见解。我们讨论了 QBCL(细胞水平的量子生物学)的几个要素,这是一个旨在将量子概念的范围扩展到高于生物组织的分子水平的研究项目。我们提出了一种新的通用方法来解决生物系统中环境引起的退相干和宏观叠加问题,强调这些概念的“基础依赖”性质。我们引入了“形式叠加”的概念,并将其与薛定谔猫(即宏观上不同状态的叠加)区分开来。后者的概念提出了一个真正的基础问题,而前者既不与常识也不与观察相矛盾,可以用来描述细胞的“决策”和适应。我们强调,“形式叠加”概念的解释应该涉及细胞中分子事件之间的非经典相关性。此外,我们描述了如何更好地理解生命物理学,从而为驱动进化适应的机制(即“基础依赖选择”,BDS)提供新的见解。我们还讨论了 BDS 的实验测试以及合成生物学在弥补“可进化机制”漏洞方面的潜在作用。关键词:薛定谔猫、密度算子、退相干、纳米生物学、系统生物学、合成生物学、本征态、适应性突变、细胞凋亡、细胞决策
物理5350。计算物理学简介。(3个学分)计算物理学简介,包括C,C ++和Python中的编程。主题包括普通微分方程,有限的差异和稳定性分析,在超过一个维度中的部分微分方程(例如Schroedinger和扩散方程)的数值解决方案,Krylov空间方法(例如,特征系统溶解器和Matrix Inversion)和Monte Carlo集成。可以涵盖介绍性机器学习和高性能计算方法。编写代码以解决物理和天体物理学选定领域的当前问题。注册要求:建议准备:Python,C,C ++,UNIX。查看类(https://catalog.uconn.edu/course-search/?详细信息和代码= Phys%205350)
这篇课文是斯坦福大学为电气工程和材料科学研究生准备的两学期课程,并用于该课程。该课程的目的是教授工程师在其职业中可能需要或发现有用的量子力学部分。令我惊讶的是,这使得该课程几乎与传统的物理量子课程正交,后者提供大多数物理学家认为每个学生都应该学习的部分。课程结束后,谐振子状态的解析解很少有用。我相信,在工程活动中很少需要薛定谔方程的解。对于大多数有关分子或固体电子结构的问题,紧束缚公式更为切题,同时还应了解如何获得所需参数以及如何根据这些参数计算属性。我们在其他量子教科书中没有看到这些。了解何时可以使用单电子近似以及如何在需要时包含多粒子效应也很重要。需要熟悉微扰理论和变分法,并能熟练运用芬尼的黄金法则。需要掌握量子统计力学的要素,我相信还需要掌握从目录中可以看到的许多其他主题,甚至包括原子核壳模型的要素。学生很难在短时间内吸收如此多样化的材料,但更现代的学习方法只学习当前需要的那部分内容,对于掌握物理学的基本定律来说,这种方法并不可行。按章节列出的近五十个练习旨在将量子力学用于日常问题,而不是说明量子理论的特征。解决方案可从以下网站获取,作为教师指南
量子信息科学不仅有望新技术,而且对量子力学的新理解有望。在QKD的情况下,这两种诺言都得到了部分兑现。现在有少数销售QKD系统的公司正在进行中,以确定如何将QKD集成到光学通信网络中。QKD的安全证明为量子世界实例化无超光信号的原理的微妙方式提供了新的见解:一种可能指出对量子力学的理解水平的原则。因此,很高兴看到如此清晰而优雅的主题介绍在保护信息中:从经典错误校正到苏珊·洛普(Susan Loepp)和威廉·沃特斯(William Wooters)的量子加密(cambridge University Press,2006年)。第一章是对密码学的简单介绍,并包含了古典密码的简洁解释,包括对第二次世界大战中德军使用的谜语密码的有趣讨论。本章继续讨论块密码,DES和公共密钥密码系统。在每种情况下,演示文稿都清晰而整洁,脚注将读者引向更详细的演示。本章没有以前接触密码系统,但很快就将初学者带入基础知识。第2章是对量子力学的简介,它又不对该主题进行以前的表现。在本章中,第一个组件的基本要素得到很好的解释。讨论基于光子极化的物理示例。量子理论可以粗略地说成两个组成部分:第一个概率振幅计算,使一个能够计算一个概率分布以进行测量结果,一旦给出了概率振幅,其次给出了许多方法(schroedinger机械,量子机械性动力学),从而使量子幅度amplude amplus。有足够的细节可以使某人有兴趣的人,主要是密码学以掌握后来的章节。几乎没有物理背景。不幸的是,尽管这很经济,但它确实限制了可以实现的理解水平。例如,一个不专心的学生可能会认为光的极化向量和用来描述其量子状态的两个维矢量是同一件事。它们不是:前者是指在普通的三维物理空间中的电场矢量,而后者则是概率幅度列表,并居住在希尔伯特(Hilbert)空间中。,但作为概率演算的介绍,
自本书第一版出版以来,量子系统物理学领域取得了许多进展,特别是在基本粒子领域,这使得编写第二版的必要性显而易见。在编写第二版时,我们向那些我们知道在课程中使用本书的教师征求了建议(也向那些我们知道没有使用本书的教师征求了建议,以了解他们对本书的反对意见)。第一版广受欢迎,这使我们能够广泛征求意见,了解使第二版更加有用的方法。我们无法对所有收到的建议采取行动,因为有些建议与其他建议相冲突,或者由于技术原因无法实施。但我们确实对这些建议的普遍共识做出了回应。许多第一版的用户认为,应该在本书中添加新主题,通常是量子力学中更复杂的方面,例如微扰理论。但也有人说,第一版的水平非常适合他们教授的课程,不应该改变。我们决定通过在新版本中以新附录的形式添加材料来尝试满足这两组人的需求,但是我们这样做的目的是保持附录和正文的分离,这是原版的特点。更高级的附录很好地整合在正文中,但这是一种单向的,而不是双向的整合。阅读这些附录之一的学生会发现正文中有很多地方提到了发展的动机和使用其结果的地方。另一方面,如果学生因为课程水平较低而没有阅读附录,他不会因为正文中有很多地方提到他不使用的附录中的材料而感到沮丧。相反,他只会在正文中找到一两个简短的括号陈述,告诉他存在一个与正文中处理的主题有关的可选附录。第二版中新增或有重大改动的附录有:附录 A,狭义相对论(增加了一些实例并简化了一个重要计算);附录 D,波群的傅里叶积分描述(新);附录 G,方阱势下时间无关薛定谔方程的数值解(完全重写,包含一个在微型计算机上求解二阶微分方程的 BASIC 通用程序);附录 J,时间无关微扰理论(新);附录 K,时间相关微扰理论(新);附录 L,玻恩近似(新);附录 N,单电子原子的角和径向方程的级数解(新);附录 Q,晶体学(新);附录 R,经典和量子机械电磁学中的规范不变性(新)。许多附录(包括新旧附录)的末尾都添加了习题集。特别是,附录 A 现在包含一套简短但全面的习题集,供以相对论为主题开始“现代物理”课程的教师使用。
单元2:牛顿的古典力学法律;相空间动力学,稳定性分析;中央力量运动;两体碰撞,散射在实验室和质量框架中;刚体动力学,惯性张量的力矩,非惯性框架和伪型;变分原理,拉格朗日和哈密顿的形式主义和运动方程;泊松支架和规范转换;对称,不变性和保护法,环状坐标;周期性运动,小振荡和正常模式;相对论,洛伦兹转化,相对论运动学和质量能量等效的特殊理论。单元3:电磁理论静电:高斯定律及其应用;拉普拉斯和泊松方程,边界价值问题;磁静态:生物武器定律,安培定理,电磁诱导;麦克斯韦(Maxwell)的方程式和线性各向同性介质中的方程式;界面的字段上的边界条件;标量和矢量电势;仪表不变性;自由空间,介电和导体中的电磁波;反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射;等离子体的分散关系; Maxwell方程的Loentz不变性;传输线和波导指南;带电颗粒在静态和均匀电磁场中的动力学;移动电荷,偶极子和智障电位的辐射。单元4:量子力学波粒对偶性;坐标和动量表示中的波函数;换向者和海森堡的不确定性原则;矩阵表示;狄拉克的胸罩和样式法; Schroedinger方程(时间依赖性和时间无关);特征值问题,例如粒子中的盒子,谐波振荡器等。;穿过障碍;运动中心的运动;轨道角动量,角动量代数,自旋;添加角动量;氢原子,自旋 - 轨道耦合,精细结构;时间独立的扰动理论和应用;变分方法; WKB近似;时间依赖的扰动理论和费米的黄金法则;选择规则;半古典辐射理论;散射,相移,部分波,天生近似的基本理论;相同的粒子,保利的排除原理,自旋统计量连接;相对论量子力学:klein gordon和dirac方程。单元5:热力学及其后果的热力学和统计物理定律;热力学潜力,麦克斯韦关系;化学潜力,平衡;相空间,微染色;微型典型,规范和宏大的合奏和分区功能;自由能和热力学量的连接;一阶相变;经典和量子统计,理想的费米和玻色气体;详细的平衡原则;黑体辐射和普朗克的分销法; Bose-Einstein凝结;随机步行和布朗运动;介绍非平衡过程;扩散方程。单元6:电子设备半导体设备物理,包括二极管,连接,晶体管,现场效应设备,HOMO和HETEROJUNTICT设备,设备结构,设备特性,频率依赖性和应用;光电设备,包括太阳能电池,光电探测器和LED;高频设备,包括
