基于高功率和短脉冲激光器的几项未来实验涉及高能光子的产生,从而将新的重点放在了高能伽马极光法的挑战性主题上。在不久的将来,罗马尼亚的Eli-NP [1]设施将在两个10 PW激光束的帮助下,对高达〜10 23 W/cm 2的强度状态进行独特的研究。尽管低于Schwinger限制(〜10 29 W/cm 2)[2],这种强度制度为理论上预期的QED现象的实验研究开辟了道路,例如辐射反应和辅助成对的产生,在高强度激光脉冲和高能量电子之间的碰撞中(通过Laser Encelons之间的碰撞)(通过Laser Eccelfield aCcelfield aCceleratife)(创建)。在这些实验中,较高的兴趣是在接近GEV或GEV量表下对产生光子的极化和能量的测量。
最近有人提出,嘈杂的中型量子计算机可用于优化经典计算机上格子量子场论 (LQFT) 计算的插值算子构造。这里,开发并实施了该方法的两种具体实现。第一种方法是最大化插值算子作用于真空状态与目标本征态所创建状态的重叠或保真度。第二种方法是最小化插值状态的能量期望值。这些方法在 (1 + 1) 维中针对单一味大质量 Schwinger 模型的概念验证计算中实现,以获得理论中矢量介子状态的量子优化插值算子构造。虽然在没有量子门误差噪声的情况下,保真度最大化是更好的选择,但在概念验证计算中,能量最小化对这些影响更具鲁棒性。这项工作具体展示了中期量子计算机如何用于加速经典 LQFT 计算。
我们研究了d¼4minkowski时空中自由费米子场理论的纠缠熵的通用对数系数。作为热身,我们通过对D¼2半线的尺寸减小以及随后在晶格上进行数值实时计算来重新审视无质量自旋1 = 2场情况。出乎意料的是,该面积系数差异以径向离散化,但对于由相互信息引起的几何正则化是有限的。所得的通用对数系数 - 11 = 90与文献一致。对于自由质量自旋 - 3 = 2场,Rarita-Schwinger场,我们还对半行进行了尺寸降低。除了省略最低的总角动量模式外,降低的哈密顿量与自旋1 = 2一致。这给出了一个通用对数系数-71 = 90。我们讨论了无应力能量张量的自由高自旋场理论的通用对数系数的物理解释。
编辑器:F。Gelis QCD与字符串模型之间的关系是探索Quarks之间相互作用潜力的宝贵观点。在这项研究中,我们研究了与加速观察者所经历的临床相关的手性对称性的恢复。利用Schwinger模型,我们分析了Quark-Antiquarks之间的弦或染色体孔管的临界点,而夸克之间的分离增加。在这项研究中,确定Quark-Antiquark染色器式孔管或弦弦断裂的临界距离为𝑟= 1。294±0。040 FM。与此临界点相对应的加速度和未温度的温度表示系统的手性对称性从断裂状态到恢复状态的过渡。我们对临界加速度的估计值(𝑎=1。14×10 34 cm/s 2)和未温度(𝑇= 0。038 GEV)与以前的研究保持一致。此分析在夸克相互作用的背景下,阐明了手性对称性恢复,效果的效果以及弦乐或铬发射器的破裂之间的相互作用。
检查。论文是:•Max Planck 23。4。1858 Kiel•Arnold Sommerfeld 5.12。 1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1858 Kiel•Arnold Sommerfeld 5.12。1868Königsberg•Albert Einstein 14。 3。 1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1868Königsberg•Albert Einstein 14。3。1879 ULM•Ernest Rutherford 30。 8。 1871 Spring Grove•Max Burn 11 12. 1882 Breslau•James Franck 26。 8。 1882 Hamburg•Niels Bohr 7。 10。 1885哥本哈根•ErwinSchrödinger12。 8。 1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1879 ULM•Ernest Rutherford 30。8。1871 Spring Grove•Max Burn 11 12.1882 Breslau•James Franck 26。8。1882 Hamburg•Niels Bohr 7。10。1885哥本哈根•ErwinSchrödinger12。8。1887 VIENNA•WOLFGANG PAULI 25。 4。 1900维也纳•Werner Heisenberg 5.12。 1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1887 VIENNA•WOLFGANG PAULI 25。4。1900维也纳•Werner Heisenberg 5.12。1901Würzburg•Enrico Fermi 29。 9。 1901罗马•Paul Dirac 8。 8。 1902 Bristol•Pascual Jordan 18。 10。 1902 Hannover•Lew Landau 22。 1。 1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。 7。 1911佛罗里达•理查德·费曼(Richard Feynman)11。 5。 1918皇后区,纽约•朱利安·施温格12。 2。 1918纽约市1901Würzburg•Enrico Fermi 29。9。1901罗马•Paul Dirac 8。8。1902 Bristol•Pascual Jordan 18。10。1902 Hannover•Lew Landau 22。1。1908年巴库•约翰·阿奇博尔德·惠勒(John Archibald Wheeler)9。7。1911佛罗里达•理查德·费曼(Richard Feynman)11。5。1918皇后区,纽约•朱利安·施温格12。2。1918纽约市
在本文中,我们提出了一种一维量子电动力学 (QED) 的离散时空公式,以量子细胞自动机 (QCA) 的形式表示,其本质上是局部量子门的平移不变电路。从实用角度来看,QCA 定义了一种用于相互作用 QFT 动力学的量子模拟算法(不过,先不考虑状态准备和测量问题)。但是,从理论角度来看,它也构成了一个原理证明,表明相互作用 QFT 的原生离散公式是可能且优雅的。在此图中,QFT 被定义为 QCA 的“收敛”序列,由时空格子间距参数化——与连续极限和重正化的概念相呼应。我们讨论了为什么我们希望以这种方式规避 QFT 标准公式的一些技术问题。这种构造直观,几乎不需要任何先决条件。它基于量子信息概念,建立了一个简单、可解释的量子场论模型。鉴于量子场论可能相当复杂,我们认为这也构成了重要的教学资产。
海洋CO 2水槽的强度是由两种机制之间的平衡设置的。海洋对拟人化CO 2的摄取主要是对大气CO 2升高的化学反应,迫使二氧化碳(PCO2)在空气海界面上的不平衡不平等。碳浓缩反馈参数是一种通常用于衡量的含量的人为CO 2,海洋被海洋吸收了多少CO 2的每个单位(以PPM表示)添加到大气中,假设海洋动力学和热纳米态保持不变(Arora等人,Arora等人,2020年; boera&arora; fried。 &Williams,2021年; Roy等人,2011年;然而,大气上的上升也导致了全球变暖,这改变了海洋状态。尤其是地表水的变暖和与之相关的海洋分层的增加往往会减慢碳周期,从而导致天然碳的净量超过量,并在全球范围内减少了人为碳的吸收。这种负碳气候反馈
摘要 基于测量的量子计算 (MBQC) 是一种很有前途的方法,可以减少嘈杂的中型量子算法(例如变分量子特征值求解器 (VQE))中的电路深度。与基于门的计算不同,MBQC 在预先准备的资源状态上使用局部测量,在电路深度和量子比特数之间提供权衡。确保确定性对 MBQC 至关重要,特别是在 VQE 环境中,因为测量模式缺乏流动性会导致在无关位置评估成本函数。本研究介绍了尊重确定性并类似于广泛使用的与问题无关的硬件高效 VQE 假设的 MBVQE 假设。我们使用 Schwinger Hamiltonian 和 XY 模型上的理想模拟来评估我们的方法,并在具有自适应测量功能的 IBM 硬件上进行实验。在我们的用例中,我们发现通过后选择确保确定性比通过自适应测量效果更好,但会增加采样成本。此外,我们提出了一种有效的 MBQC 启发式方法,用于在具有重十六进制连接的硬件上准备资源状态,特别是集群状态,需要单轮测量,并在具有 27 和 127 个量子比特的量子计算机上实现此方案。我们观察到较大集群状态的显着改进,尽管直接基于门的实现对于较小的实例实现了更高的保真度。
在经典迭代线性系统求解器中,预处理是处理病态线性系统最广泛和最有效的方法。我们引入了一种称为快速求逆的量子原语,可用作求解量子线性系统的预处理器。快速求逆的关键思想是通过量子电路直接对矩阵求逆进行块编码,该电路通过经典算法实现特征值的求逆。我们展示了预处理线性系统求解器在计算量子多体系统的单粒子格林函数中的应用,该函数广泛用于量子物理、化学和材料科学。我们分析了三种情况下的复杂性:哈伯德模型、平面波对偶基中的量子多体哈密顿量和施温格模型。我们还提供了一种在固定粒子流形内进行二次量化格林函数计算的方法,并指出这种方法可能对更广泛的模拟有价值。除了求解线性系统之外,快速求逆还使我们能够开发用于计算矩阵函数的快速算法,例如高效准备吉布斯态。我们分别基于轮廓积分公式和逆变换介绍了两种高效的此类任务方法。
2今年的审查是由特遣部队在数字技术(行为科学小组委员会)行为科学小组委员会起草的,并由工作队文章和博客小组委员会批准。行为科学小组委员会分析了行为科学和数字技术产品和服务的含义,以评估和影响风险和文化,并加强,重新设计和重新设计和重新遵守计划。行为科学小组委员会的现任成员包括(1)蒂莫西·亚伯拉罕(Timothy Abrahams),合作伙伴,网络,隐私和法医服务 - PWC咨询; (2)小组委员会联合主席Tiffany Archer,Eunomia Risk Advisory,Inc。,创始人兼总裁,行为科学合规顾问和数据见解专家,以及福特汉姆法学院的兼职教授; (3)Konaai合规解决方案副总裁Bryan Judice; (4)小组委员会联合主席阿曼达·拉德(Amanda Raad),合伙人兼联合领导人全球反腐败和国际风险实践,联合创始人兼领导者,R&G Insights Lab,Ropes&Gray; (5)哈佛商学院教授尤金·索尔特斯(Eugene Soltes),也是他们为什么这样做的作者:在白领罪犯的心中。文章和博客的工作队小组委员会是工作队著作的同行评审,尤其是文章,博客,报告,语句和其他著作。当前的小组委员会成员包括(1)金融技术协会政策和政府事务主管Angelena Bradfield; (2)罗伯特·马哈里(Robert Mahari),哈佛法学院和麻省理工学院媒体实验室; (3)特遣队联合主席洛林·麦克高文(Lorraine McGowen),赫林顿(Herrington&Sutcliffe)有限公司Orrick的合伙人; (4)罗伯特·施温格(Robert Schwinger),诺顿罗斯·富布赖特(Norton Rose Fulbright Us LLP)的合伙人; (5)埃德温·史密斯(Edwin Smith),马萨诸塞州统一法律专员兼摩根·刘易斯(Morgan Lewis)的合伙人; (6)蒂法尼·史密斯(Tiffany Smith),威尔默海尔(Wilmerhale)的合伙人; (7)杰罗姆·沃克(Jerome Walker),特遣部队联合主席,杰罗姆·沃克(Jerome Walker PLLC)的合伙人。