摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
随着人工智能的不断发展,其推动科学发现的能力无疑将不断扩大,从而开辟新的研究领域,并帮助解决人类面临的一些最紧迫的挑战。然而,成功利用人工智能促进科学进步可能具有挑战性。存在经济障碍,例如计算资源有限和资金匮乏。(即使对于大型机构而言,构建和利用人工智能模型的成本也高得令人望而却步。)7 此外,缺乏相关数据集,尤其是包容性且无偏见的数据集,可能会阻止研究人员在某些领域利用人工智能,而使用低质量数据集可能会导致在这些数据集上训练的人工智能模型出现不准确且可能具有歧视性的行为。跨学科研究人员的稀缺也会抑制人工智能在科学上的潜力。此外,还存在技术障碍,例如某些人工智能模型难以扩展以及它们分析某些大型数据集的能力有限。在目前的状态下,人工智能系统无法完全理解 DNA 或重力等基本概念。8
组织委员会成员:V。Shebanin - 技术科学博士,教授,乌克兰国家农业科学学院院士,乌克兰国家科学学院院士,乌克兰国家科学院院士,Mykolaiv国家农业大学校长,组织委员会校长M. Gill -Gill -dean Instruction and Strescation of Standard of Forkech of Fordech of Foreech and Fordech and Fordech and Forech and Livest,Livest,Livesty,Livesty,Livesty,Livest,Livest,Livest,,兼农业科学,教授,乌克兰国家农业科学院教授,乌克兰国家科学学院院士 - 科学委员会主任O. Karatieiva O. Karatieieva-生物技术与生物工程学系主任,Mykolaiv National Agrian Agrian Agrian Informent of Mriverririric of Mriverriric of Mriverriric of Mriverririric of Mriverririric of Mriverriric of Mriverririric of Mriverririric of Mriverririric of Mriverriric of Mriverririric of Mriverriv科学委员会
开发一种基于人工智能 (AI) 的方法,用于检测接受 FDG-PET/CT 分期的霍奇金淋巴瘤 (HL) 患者的局灶性骨骼/骨髓摄取 (BMU)。将单独测试组的 AI 结果与独立医生的解释进行比较。使用卷积神经网络对骨骼和骨髓进行分割。AI 的训练基于 153 名未接受治疗的患者。骨摄取明显高于平均 BMU 的被标记为异常,并根据总异常摄取平方计算指数以识别局灶性摄取。指数高于预定义阈值的患者被解释为具有局灶性摄取。作为测试组,回顾性纳入了 48 名在 2017-2018 年期间接受过分期 FDG-PET/CT 且活检证实患有 HL 的未接受治疗患者。十位医生根据局灶性骨骼/BMU 对 48 例病例进行分类。在 48 例 (81%) 的局部骨骼/骨髓受累病例中,大多数医生同意 AI 的观点。医生之间的观察者间一致性为中等,Kappa 值为 0.51(范围为 0.25–0.80)。可以开发一种基于 AI 的方法来突出显示使用 FDG-PET/CT 分期的 HL 患者中的可疑局部骨骼/BMU。核医学医生之间关于局部 BMU 的观察者间一致性为中等。
● 导航到工具 > 全局选项 > Copilot。 ● 勾选“启用 GitHub Copilot”。 ● 下载并安装 Copilot Agent 组件。 ● 单击“登录”按钮。 ● 在“GitHub Copilot:登录”对话框中,复制验证码。 ● GitHub Copilot:登录 ● 导航到或单击链接 https://github.com/login/device,粘贴验证码并单击“继续”。 ● GitHub 将请求 GitHub Copilot 必要的权限。要批准这些权限,请单击“授权 GitHub Copilot 插件”。 ● 权限获得批准后,您的 RStudio IDE 将显示当前登录的用户。 ● 关闭全局选项对话框,打开源文件(.R、.py、.qmd 等)并开始使用 Copilot 编码!
图 1:左图:透明保护结构,具有可调节厚度的玻璃层(黄色)、粘合剂层(灰色)和聚合物背衬层(蓝色),以防止玻璃碎片脱落。中图:预测(模拟)透明保护结构在被弹丸穿透后将如何失效,以示例层厚度选择为例。右图:保护结构中的实际裂纹模式与使用材料力学模型进行数值模拟所预测的失效行为非常相似
该新指数是由Murat Alper博士(MD)教授和CihanDöğer博士(MD)的副教授开发的,它使用了Google Scholar中的I10指数,H-Index和引文得分的总数和过去5年的值。此外,还使用了最近5年值与上述指数的总价值的比率。使用总共九个参数,“ AD科学指数”以11个主题(农业与林业,艺术,设计和建筑,商业与管理,经济学和计量学,教育,工程与技术,历史,历史,历史,历史,哲学,神学,法律和法律研究,法律和法律研究,社会科学,社会,社会,社会,社会,社会,社会,社会,社会,社会,社会和健康研究,哲学,工程学和技术,历史,工程学,工程,工程师),哲学和哲学多216乡村,10地区(非洲,亚洲,欧洲,北美,大洋洲,阿拉伯legeu,eeca,金砖四国,拉丁美洲和探讨)以及世界。“ AD科学指数”是基于H-指数和i10指数的分数和引用在Google Scholar中的第一个和唯一的研究,它显示了科学家的总和五年生产率系数。Besides the indexing and ranking functions, AD Scientific Index sheds life on academic lives and offers the user the opportunity to perform an efficient academic analysis to scrutinize and detect faulty and unethical profiles, plagiarism, forgery, distortion, duplications, fabrication, slicing, salamization, unfair authorship, and several manifestations of academic mobbing.此类分析还有助于揭示机构实施的几项政策的中期和长期结果,包括学术工作和保留政策,工资政策,学术激励措施和科学工作环境的政策。
摘要 mTORC1 蛋白激酶响应各种输入(包括氨基酸)调节细胞生长,这些输入向 Rag GTPases 发出信号,促进 mTORC1 易位到溶酶体表面(其激活位点)。这种途径在许多疾病中失调,包括糖尿病和癌症;然而,我们对氨基酸激活 mTORC1 的机制的理解并不完整。长期以来,一个谜团是氨基酸缺乏时抑制 mTORC1 的成分的身份。作为一名研究生,我推断负调节剂可能会影响 Rags,因为它们在营养感知中起着核心作用。我们对 Rags 进行了免疫沉淀,然后进行质谱分析 (IP/MS),结果发现了两个相互作用的蛋白质复合物,我们称之为 GATOR1 和 GATOR2。GATOR2 正向调节 mTORC1 并在 GATOR1 上游或与 GATOR1 并行发挥作用,GATOR1 是一种 Rag GTPase 激活蛋白,也是 mTORC1 的关键抑制剂。 GATOR1 成分在癌症中发生突变,可能有助于识别对 mTORC1 抑制有反应的癌症。第二个未解之谜是 mTORC1 上游氨基酸传感器的身份。为了识别假定的传感器,我们对已知的 mTORC1 调节剂进行了广泛的 IP/MS。我们发现 Sestrin2 和 CASTOR1 是与 GATOR2 相互作用的蛋白质,分别起到亮氨酸和精氨酸传感器的作用。Sestrin2 和 CASTOR1 与 GATOR2 结合以抑制 mTORC1,并且在存在氨基酸的情况下这种抑制会得到缓解。重要的是,这些传感器的氨基酸结合能力是 mTORC1 感知氨基酸存在所必需的。总之,这些成分的发现澄清了我们对氨基酸如何向 mTORC1 发出信号的理解,并提供了在疾病状态下调节 mTORC1 活性的目标。
