这项研究本周(2024年4月25日)在本质上发表,详细介绍了由安德烈·吉姆(Andre Geim)教授,朱利安·巴里埃(Julien Barrier)博士和纳Xin博士领导的曼彻斯特团队的广泛工作,以在量子厅政权中实现超导性。他们的最初努力遵循传统的途径,在传统途径中,反向传播的边缘彼此靠近。但是,这种方法被证明是有限的。
“如果我们想在量子计算方面取得进展并创造更具可持续性的电子产品,我们需要更长的激子寿命和不依赖电子电荷的新信息传输方式,”领导这项研究的亚历山德拉·兰扎拉 (Alessandra Lanzara) 表示。兰扎拉是能源部劳伦斯伯克利国家实验室 (Berkeley Lab) 的高级教职科学家和加州大学伯克利分校物理学教授。“在这里,我们利用拓扑材料的特性来制造一种寿命长且对无序性非常强大的激子。”
这项研究的核心是对与 MR1 结合的小分子进行无偏质谱分析、对 MR1 与维生素 B6 相互作用的结构解析、以及由主要作者、莫纳什大学生物医学发现研究所的 Mitchell McInerney 博士和 Wael Awad 博士以及墨尔本大学彼得多尔蒂研究所的 Michael Souter 博士和 Yang Kang 先生进行的免疫学测定。
(a) 麻醉期间捕获的高分辨率电生理记录和癫痫发作期间在较长时间间隔内捕获的病理记录。(b) 图表说明了传感器在大鼠大脑的横截面视图中的放置位置,作为模型。(c) 与使用电极收集的信号 (蓝色) 相比,从放大传感器 (红色) 获得的信号表现出更高的信号分辨率和幅度。此外,与植入电极 (黑色) 记录的信号相比,放大传感器成功检测到癫痫发作期间明显的 5-10 Hz 振荡信号,这在时频频谱图中很明显。图片来源:POSTECH
在一个例子中,科学家能够诱导干细胞开始形成从头到尾延伸的小鼠身体,类似于子宫内的正常胚胎发育。在另一个例子中,科学家能够刺激干细胞产生一个大的心脏状结构,该结构具有中央腔和规律的跳动,以及早期血管网络。
研究人员推测,量子点还为实现其他量子互联网应用提供了巨大的前景,例如量子中继器、分布式量子传感,因为它们允许固有存储量子信息并可以发射光子簇状态。这项研究的成果强调了将半导体单光子源无缝集成到现实的、大规模和高容量量子通信网络中的可行性。
作者比较了海螺泉和章鱼泉微生物中发现的呼吸基因。适应极低氧水平的基因“高度表达”,这意味着它们在海螺泉中更活跃。相反,章鱼泉中的生物体表达了适应高氧水平的基因,这可能更为重要,因为在整个大氧化事件期间氧气水平都在增加。
研究人员使用一种名为 GW4869 的化合物阻止癌细胞释放细胞外囊泡,这种化合物可抑制小细胞外囊泡样外泌体的产生。在他们的模型中应用这种抑制剂后,癌细胞向 T 细胞的线粒体转移显著减少。这种干预措施有助于防止 T 细胞吸收受损的线粒体,从而减少其功能障碍。
但当他们对不同细胞类型进行详细分析时,他们发现 KDM6B 对妊娠长度的影响与另一种称为成纤维细胞的细胞类型有关。这些结构细胞通常不被认为在分娩调节中发挥作用。此外,KDM6B 在怀孕的头几天调节这些成纤维细胞。
这使得它们可以使用更少的接触,从而实现更高效的热电转换。具有“轴相关传导极性 (ADCP)”或角极导体的材料,在一个方向上传导正电荷 (p 型 ),在另一个方向上传导负电荷 (n 型 ),是横向热电装置的有希望的候选材料。不幸的是,到目前为止,对横向热电效应 (TTE) 的直接演示研究较少。