摘要 关于临床医生在遗传学/基因组学领域遇到的伦理问题已有很多文献发表,但对临床实验室科学家所经历的伦理问题的描述较少。临床实验室科学家现在经常在工作中面临伦理问题,但如何最好地支持他们解决这些问题尚未得到充分探索。这种关注的缺乏也反映在临床实验室科学家可用的伦理工具上,例如指导和审议伦理论坛,这些工具主要为管理临床中出现的问题而开发。我们探讨临床科学家遇到了哪些伦理问题,他们认为如何最好地分析和管理这些问题,以及是否可以通过更具针对性的伦理审议和实践方法(例如伦理准备)来增强他们的实践。通过对英国遗传伦理论坛特别会议上临床科学家提出的案例进行主题分析,我们得出了三个主要的伦理主题:(1)基因组医学实践导致的劳动力和责任的重新分配; (2) 结果的解释和确定性;(3) 更好的标准化和伦理方法的一致性(例如,更多的指导方针和政策)可以解决一些出现的挑战。我们认为,尽管标准化对于促进对良好(包括道德)实践的共同理解很重要,但增强和维持道德准备的补充方法对于帮助临床科学家和最近扩大的遗传/基因组医学环境中的其他人培养高质量的道德思维也很重要。
新闻新加坡新闻稿,2021年11月9日,新加坡新加坡科学家发明了“智能”窗户材料,该窗口材料不阻止射线,而不会阻止由Nanyang Technological University,新加坡(NTU Singapore)的科学家领导的国际研究团队(NTU Singapore)发明了一种“智能”窗户材料,该窗口材料可以控制热量传播视图,而无需阻止能量,可以削减能源,从而削减所需的能量,以冷却和热温造型和热温和加热。由NTU研究人员开发的,这是在开关闪烁下运行的电力(EC)窗户的新能量材料,旨在阻止红外辐射 - 这是阳光发出热量的主要组成部分。新材料具有专门设计的纳米结构,包括高级材料,例如二氧化钛(TIO 2),钨三氧化钨(WO 3),近代niobium(ND-NB)和TIN(IV)氧化物(IV)氧化物(SNO 2)。复合材料旨在涂在玻璃窗户面板上,当电力激活时,用户将能够“打开和关闭”红外辐射通过窗户的传输。根据实验模拟而没有通过窗户损害观点,该发明与ACS Omega期刊的前封面旁边有70%,因为它可通过可见光的90%传递。该材料在调节热量方面的有效性也比市售的电致变色窗口高约30%,并且由于其耐用性而更便宜。对当前电致色素(EC)窗户电染色窗的改进是当今“绿色”建筑物中的常见功能。使用时会变得有色,从而减少进入房间的光线。
量子光力学的大多数研究都集中在单个振荡器上,展示了基态冷却和量子压缩等量子现象。但集体量子行为并非如此,其中许多振荡器作为一个整体运行。虽然这些集体动力学是创建更强大的量子系统的关键,但它们需要对具有几乎相同特性的多个振荡器进行极其精确的控制。
本出版物是在参谋长联席会议主席的指导下编写的。它阐述了联合理论,以管理美国武装部队在联合行动中的活动和表现,并为机构间协调和美国军方参与多国行动提供了理论基础。它为作战指挥官和其他联合部队指挥官 (JFC) 行使权力提供军事指导,并规定了作战、教育和培训的联合理论。它为武装部队制定适当计划提供军事指导。本出版物的目的并非限制 JFC 的权力,使其无法以 JFC 认为最合适的方式组织部队和执行任务,以确保在实现总体目标方面团结一致。
摘要 本研究调查了全球 669 名植物科学家,以了解哪些物种(基因编辑的哪些结果)、哪些地方(哪个大洲)和哪些作物(哪些作物)最有可能从 CRISPR 研究中受益,以及是否就农业商业化应用的具体障碍达成共识。此外,我们还对公共和私人植物科学家进行了分类,以了解他们对 CRISPR 研究未来的看法是否存在差异。我们的研究结果表明,玉米和大豆有望从 CRISPR 技术中受益最多,而真菌和病毒抗性是最常见的实施手段。总体而言,植物科学家认为消费者的认知/知识差距是阻碍 CRISPR 应用的最大障碍。尽管 CRISPR 被誉为一种可以帮助缓解粮食不安全和提高农业可持续性的技术,但我们的研究表明,植物科学家认为消费者对 CRISPR 的看法存在一些很大的担忧。
在最近的十年中,我们目睹了一种非凡的软机器人技术。对软机器人的重新点燃的兴趣与制造技术的进步部分相关,这些技术使得能够在多个长度尺度上制造具有尺寸的复杂多物质机器人体。在最近的手稿中,读者可能会发现能够抓握,步行或游泳的奇特的柔软机器人。但是,出版数量的增长并不总是反映出该领域的真正进步,因为许多手稿采用了非常相似的想法,并且只是调整了软体的几何形状。因此,我们毫无保留地同意未来研究必须超越“为了软化的柔软的事物)的情绪。”软机器人无疑是一个引人入胜的领域,但它需要对限制和挑战进行批判性评估,使我们能够聚焦软机器人在传统同行中拥有最佳杠杆作用的领域和方向。在这一观点论文中,我们讨论了与能源自治,无电子逻辑和可持续性等重要方面有关的机器人研究的现状。目的是从早期职业研究人员提供的两个相反的观点批判性地研究软机器人技术的观点,并突出显示未来最有希望的未来方向,即我们认为,使用软机器人技术来利用软机器人技术来实现软生物启发的人工技术。
周博士已经朝着这一目标努力了15年以上。在早期实验中作为博士后研究人员,他发现普通的胰腺细胞可以通过强制激活三种转录因子的激活(或控制基因表达的蛋白质) - 在正常β细胞发育所需的基因所需的基因所需的激活中,可以将普通的胰岛细胞转变为产生类似β的β细胞。
liu教授是一个团队的一部分,该团队发现了爱泼斯坦 - 巴尔病毒(EBV)的特定风险菌株,这些风险与鼻咽癌(NPC)的发展最密切相关,鼻咽癌是南方和东南亚特有的鼻癌,但在其他地区很少见。这些EBV风险菌株在NPC流行区域中更为普遍,并造成了发展NPC总体风险的80%以上。这些EBV风险菌株可以用作生物标志物,以识别NPC风险高的个体,这将使早期诊断并提高存活率。该发现还开辟了可能通过通过疫苗接种来消除这些EBV风险菌株的感染来预防NPC的可能性。
这使得它们可以使用更少的接触,从而实现更高效的热电转换。具有“轴相关传导极性 (ADCP)”或角极导体的材料,在一个方向上传导正电荷 (p 型 ),在另一个方向上传导负电荷 (n 型 ),是横向热电装置的有希望的候选材料。不幸的是,到目前为止,对横向热电效应 (TTE) 的直接演示研究较少。
新闻新加坡新闻稿,2022年6月2日,新加坡新加坡科学家开发了一种“面料”,将身体运动变成电力“面料”,有一天可以将其整合到衣服或可穿戴的电子产品中,向Nanyang Technological University,新加坡新加坡(新加坡NTU)的GO科学家使用电源设备,从而开发了一种可伸展的和水的“ Fabric” Fabric'Fabric'Faffic'能量生成的能量能量发电,使电型转向电力发动。织物中的关键成分是一种聚合物,当被压缩或挤压时,将机械应力转换为电能。它也用可拉伸的氨纶作为基础层制成,并与类似橡胶的材料集成,以保持其坚固,柔性和防水(请参见下面的图像在编辑器的注释中)。在4月的《科学杂志高级材料》中报道的概念验证实验中,NTU新加坡团队表明,敲击3厘米乘4厘米的新织物的新织物产生了足够的电能以点亮100 LED。洗涤,折叠和折断织物不会引起任何性能降解,并且可以保持稳定的电气输出长达五个月,这表明其可能用作智能纺织品和可穿戴的电源。材料科学家和NTU副教务长(研究生教育)领导该研究的Lee Pooi See教授说:“已经有很多尝试开发可以从运动中收获能量的面料或服装的尝试,但巨大的挑战是开发在洗涤后不会降低功能的事物,同时仍保留出色的电气输出。在我们的研究中,我们证明了我们的原型在洗涤和折磨后继续运转良好。我们认为它可以编织成T恤或整合到鞋底上,以从人体最小的动作中收集能量,将电源运送到移动设备。”