各种各样的生态系统都可以封存碳,大多数利用植物从大气中去除碳并将其与生态系统结合。蓝碳是指储存在沿海和海洋植物生态系统中的碳,例如红树林、海草、盐沼和其他沿海和海洋生态系统(Howard 等人,2023 年)。研究表明,海洋碳汇的碳浓度等于或高于陆地系统(Lovelock 等人,2019 年;McCreadie 等人,2021 年)。沿海和潮间带碳汇(如红树林、盐沼和海草床)提供了一系列其他生态系统服务,这些服务将直接增强沿海的复原力(例如,红树林保护海岸免受气候变化下可能更频繁的风暴潮的影响)(Hagger 等人,2022a 年)。澳大利亚拥有广阔的海岸线和多样化的生态系统,在蓝碳封存方面拥有巨大的潜力(Serrano 等人,2019 年)。
保护和恢复浮雕床,高知县的协作森林植被项目,东北地区沿海森林的恢复项目,恢复Enhalus acoroides(磁带海草),其他森林维护,与自然有关的教育和自然界的教育和宣传活动,在自然资源和生物学上披露的活动,自然和生物学的<自然范围<
2016 年《海岸管理法》规定了保护、恢复和提高沿海湿地恢复力的管理目标,包括提供迁徙机会。《恢复力和灾害州环境规划政策》包括开发控制,以保护沿海湿地并指导适当的开发。其他几项法案,包括 1994 年《渔业管理法》,保护海草、红树林和盐沼物种。
东盟海域拥有巨大的自然资源,为东盟约 6.25 亿人提供生计。东南亚总面积的 66% 以上被海洋覆盖,是全球海洋生物多样性的中心,拥有世界 15% 的渔业。此外,据估计,东盟海域每年可创造 3 至 6 万亿美元的产值和约 2.6 亿个就业岗位。东盟还拥有 33% 的海草床、34% 的珊瑚礁覆盖率和 35% 的红树林。除了经济效益之外,红树林、海草草甸和盐沼等沿海和海洋生态系统还可作为高效的碳汇,提供陆地和海洋物种,这些物种还可减轻温室气体排放,并作为抵御海平面上升和热带气旋的天然屏障,支持气候适应。东盟领导人认识到东盟水域对该地区经济和环境的至关重要的作用,在2021年10月26日举行的第40届东盟峰会上通过了《蓝色经济宣言》,并在2023年9月举行的第43届东盟峰会上批准了《东盟蓝色经济框架》。该框架推进了东盟发展包容、公平和可持续蓝色经济的雄心,使蓝色经济成为东盟经济增长和繁荣的新引擎。
当前的研究表明,沿海湿地,尤其是盐木和海草床,比森林和其他陆地栖息地更高的碳含量要高得多。鉴于气候变化的加速影响,评估不同栖息地类型的二氧化碳隔离潜力并量化其对温室气体减少的贡献的兴趣越来越大。At the latest Trilateral Governmental Conference in 2022, the Trilateral Governmental Council decided to ‘investigate the role of the ecosystem service value of carbon sequestration by typical Wadden Sea habitats like seagrass beds and salt marshes and their contribution to the EU greenhouse gas reduction targets whilst preserving the Outstanding Universal Value' ( CWSS, 2023 , see also SIMP ).代表科学,自然保护或管理的专家之间的信息交换是更好地了解Wadden Sea中CO 2隔离的当前知识状态的关键,并评估该地区有助于减少温室气体的潜力。本网络研讨会应是获得可用信息概述的第一步,同时还为专家提供了讨论的机会,例如知识差距,对CO 2进行三边评估的机会和/或管理措施对Wadden Sea中CO 2隔离的潜在影响。我们计划从正在进行的项目上进行多次演讲,理想情况下涵盖了不同的瓦登海栖息地类型,然后在突破小组中进行时间讨论关键主题,使所有参与者有机会为讨论做出贡献。
摘要尽管最近努力收集整个太平洋岛屿地区的高分辨率多波束测深数据,但在 0-30 米深度范围内仍存在重大差距。实现这些地区的测深覆盖对于评估那里的珊瑚礁生态系统的健康状况至关重要。在这里,我们使用 WorldView-2 多光谱卫星图像和两种深度推导方法(Lyzenga,2006;Stumpf 等人,2003),将光谱辐射值与地面真实深度信息相关联,以推导夏威夷主要岛屿浅水区的深度。与 Stumpf 等人相比,我们的结果表明使用 Lyzenga (2006) 多元线性回归方法的准确性有所提高。(2003) 比率法。此外,我们通过从 Lyzenga (2006) 方法中消除线性化过程获得了更好的结果。这种改进可能与夏威夷主要岛屿内缺乏大型海草聚集有关,因为海草的存在已被证明会影响地面真实深度和光谱辐射值之间的线性关系(Doxani 等人,2012 年)。我们得出的深度产品的准确性与多光谱卫星图像的质量、地面真实数据的可用性和水深直接相关,水深 >20 米时准确性会大幅下降。我们的结果表明,在缺乏浅层(0-20 米)高分辨率测深数据的情况下,卫星得出的深度是研究浅层珊瑚礁生态系统的重要资源。
摘要尽管最近努力收集整个太平洋岛屿地区的高分辨率多波束测深数据,但在 0-30 米深度范围内仍存在重大差距。实现这些地区的测深覆盖对于评估那里的珊瑚礁生态系统的健康状况至关重要。在这里,我们使用 WorldView-2 多光谱卫星图像和两种深度推导方法(Lyzenga,2006;Stumpf 等人,2003),将光谱辐射值与地面真实深度信息相关联,以推导夏威夷主要岛屿浅水区的深度。与 Stumpf 等人相比,我们的结果表明使用 Lyzenga (2006) 多元线性回归方法的准确性有所提高。(2003) 比率法。此外,我们通过从 Lyzenga (2006) 方法中消除线性化过程获得了更好的结果。这种改进可能与夏威夷主要岛屿内缺乏大型海草聚集有关,因为海草的存在已被证明会影响地面真实深度和光谱辐射值之间的线性关系(Doxani 等人,2012 年)。我们得出的深度产品的准确性与多光谱卫星图像的质量、地面真实数据的可用性和水深直接相关,水深 >20 米时准确性会大幅下降。我们的结果表明,在缺乏浅层(0-20 米)高分辨率测深数据的情况下,卫星得出的深度是研究浅层珊瑚礁生态系统的重要资源。
生态系统官能团组成了一组相关的生态系统,这些生态系统具有共同的生态驱动因素,特征和特征的特征。例如,海草草地在海洋领域,陆地领域的热带/亚热带低地雨林,或淡水领域中的自流泉和绿洲。在实践中,这意味着具有既定生态系统分类的国家应与类型学交叉将其生态系统分类交叉。对于来自多个来源分类的国家,类型学可以帮助综合这些数据。对于没有当前生态系统分类的国家,全球生态系统类型学可以作为开发自己的民族分类的起点。
