• 永久改变海岸线和水深(海底地貌的深度和轮廓),从而造成死区并永久改变下游的沉积和水交换。这些变化将对构成整个拉姆萨尔湿地生态特征的关键过程和组成部分产生不利影响,并且无法缓解或抵消; • 直接导致潮间带泥滩和迁徙物种觅食区的消失; • 增加整个拉姆萨尔湿地的沉积和浊度; • 增加污染物和外来物种;以及 • 对潮汐制度造成不利影响,潮间带泥滩、海草和其他植被(例如红树林)赖以生存的潮汐制度为迁徙物种和其他受保护动物提供了合适的觅食栖息地和食物网。
蓝色碳生态系统 - 红树林,海草草地和盐沼 - 对于全球有机碳固换至关重要。这些生态系统在促进气候变化和适应性的同时是显着的碳汇。他们提供了许多好处,包括沿海保护,水疗法和托儿所栖息地(见图1)。然而,这些生态系统受到天然和人为压力源的高度威胁,显着损失和已经观察到的栖息地的降解。已经记录了这些沿海生态系统的脆弱性,并且未来的气候高温项目需要充分纳入对这些重要碳汇的保护,恢复和保护。大部分已发表的蓝色碳研究源自发达国家(例如Howard等人,2017年; MacReadie等人,2019年; Wylie等人,2016年),导致科学文献中某些物种(盐沼泽植物,温带海草)的过分占代表性。 虽然盐沼在热带地区稀缺,但海草和红树林是主要的沿海生态系统(例如,Giri等,2011; unsi,2008)。 热带地区是特别丰富的蓝色碳储层(Donato等,2011),印度尼西亚拥有最大的红树林和海草国家地区(Unsworth和Cullen,2010年)。 尽管热带蓝色碳知识正在扩大,随着墨西哥,印度尼西亚和马来西亚等国家的研究工作,澳大利亚等地区的文献中仍然更好地代表了文献(Zhong等,2023)。Howard等人,2017年; MacReadie等人,2019年; Wylie等人,2016年),导致科学文献中某些物种(盐沼泽植物,温带海草)的过分占代表性。虽然盐沼在热带地区稀缺,但海草和红树林是主要的沿海生态系统(例如,Giri等,2011; unsi,2008)。热带地区是特别丰富的蓝色碳储层(Donato等,2011),印度尼西亚拥有最大的红树林和海草国家地区(Unsworth和Cullen,2010年)。尽管热带蓝色碳知识正在扩大,随着墨西哥,印度尼西亚和马来西亚等国家的研究工作,澳大利亚等地区的文献中仍然更好地代表了文献(Zhong等,2023)。这种有限的知识约束,例如,有效实施旨在恢复的管理措施。优先研究领域将使各国能够在缓解措施和适应目标中利用这些领域,包括对这些生态系统的映射,测量碳库存和流量,考虑到生态系统服务以及生计机会,政策发展,政策发展和评估潜在的减排活动。
海草及其相关环境的遥感基于这样的原理:遥感器可以“看到”基质以及基质上或基质内生长的植被。遥感仪器测量太阳光穿过大气层、与目标相互作用、并反射回大气层后,由安装在飞机或卫星上的传感器进行测量的光线。海草等底栖特征是否能够真正被辨别取决于水柱的光谱光学深度、海草的亮度和密度以及海草与基质之间的光谱对比度,以及遥感仪器的光谱、空间和辐射灵敏度。由于遥感图像通常覆盖比实地工作大得多的区域,因此使用各种主观或统计开发的技术进行推断。不幸的是,无法保证推断是有效的。
沿海生态系统具有很高的碳封存率。这些系统包括沼泽,海草,潮汐森林湿地和红树林。会计方法仍在精炼方法。总碳通量清单通过将“排放因子”乘以“活动数据”(区域)来起作用。确定了未来的科学和数据资源需求,可以更好地为会计系统提供信息。分析和建模表明,栖息地变化会导致碳的变化,栖息地的变化是海平面上升的结果。海平面上升导致沿海地区从碳水槽切换到碳源。在SLR下对沿海栖息地和蓝色碳的管理建议:增强现有沼泽,考虑沿海计划中SLR的考虑,重新连接淡水湿地以减少甲烷排放。
海草及其相关环境的遥感基于这样的原理:遥感器可以“看到”基质以及基质上或基质内生长的植被。遥感仪器测量太阳光穿过大气层、与目标相互作用、并反射回大气层后,由安装在飞机或卫星上的传感器进行测量的光线。海草等底栖特征是否能够真正被辨别取决于水柱的光谱光学深度、海草的亮度和密度以及海草与基质之间的光谱对比度,以及遥感仪器的光谱、空间和辐射灵敏度。由于遥感图像通常覆盖比实地工作大得多的区域,因此使用各种主观或统计开发的技术进行推断。不幸的是,无法保证推断是有效的。
摘要 为了对滨海植物形成,尤其是海草床实施合理的管理,测试各种照片(彩色、红外和黑白)的图像处理潜力似乎很有意义。本研究是在圣弗洛朗湾(法国科西嘉岛)的 Posidonia oceanica 礁平台上进行的。在过去的 40 年里,没有观察到这种植物形成中发生重大的历时性演变。然而,这些海草床内陆的海岸线已被侵蚀,侵蚀值高达 40 米。使用摄影测量技术(海洋环境中的新技术)可以获得给定地点的数字模型。将制图和测深数据进行比较,并将其整合到一个地理信息系统中,可以首次评估海草的空间分布。
在全球范围内,海草草地以惊人的速度丢失,在过去的30年中,英国损失了多达40%的海草覆盖范围。海草提供各种生态系统服务,因此有几项努力旨在恢复英国这些丢失的草地。迄今为止,已经有三种中心的海草修复方法:将天然存在的海草移植到新地点,将种子直接种植到海床上,并种植了耕种的海草原位,将其种植到海洋环境中。这些方法对于英国海草物种Zostera Mariana和Z. Noltei取得了不同的成功。海洋保护信托基金(Oceant Trust)正在开发一条修复管道,该管道将种子在室内水产养殖设施中种植,并将已建立的植物移植到环境中。苗圃种子可以达到高发芽的成功率,但是这种成功目前是很大的变化,室内设施中的植物健康也是如此。
生物学入侵正在影响全球生物多样性,生态系统和社会经济。海洋非土著物种(MNIS)可以通过人类活动(例如海上运输和粗心丢弃水族馆物种)引入。尽管为防止引入MNI的努力做出了重大努力,但仍会出现事件,包括紫s,甲壳类动物,沿海,anthozoans,bryozoans,bryozoans,sponges,acraalgae,acroalgae,seagrasses and Mangroves(Alidoost Salimi Salimi等,2021)。一旦MNI在接收者地区建立,控制和消除它们就成为一项艰巨的任务。早期对MNIS的认识可以提高早期反应的有效性,特别是在引入阶段,这对于减少MNIS的影响至关重要。因此,必须在成功建立新栖息地并对当地生物多样性构成威胁之前,制定可靠且具有成本效益的策略来对MNI的早期发现进行早期检测。公众在海洋保护中扮演着重要角色(EARP和LICONTI,2020年),例如检测和监视Acanthaster SPP的爆发和监测。(Dumas等,2020),以及管理侵入性狮子弯曲势力(Clements等,2021)。为了监视MNIS的存在,已采取行动来帮助公众熟悉并有效地认识这些物种,例如使用手表清单和指南。然而,由于海洋物种的生物多样性,准确识别标本
新加坡的自然17:e2024073出版日期:2024年8月30日doi:10.26107/nis-2024-0073©新加坡国立大学生物多样性记录:在樟宜海滩的串珠海蛇ng *作者)建议引用。ng yf,soh ZS-H和Wong XZ-X(2024)生物多样性记录:樟宜海滩的串珠海蛇。新加坡的自然,17:e2024073。doi:10.26107/nis-2024-0073主题:串珠海蛇,aipysurus eydouxii(reptilia:squamata:elapidae)。主题:yu fei ng。位置,日期和时间:Johor Strait,Changi Beach by Parkark 7; 2021年4月3日;大约0859小时。栖息地:河口岸,在海草上(主要是halodule sp。)草地带有沙质底物。观察者:Ng Yu Fei Ng,Zick Shun-Hua Soh和Xavier Zi-Xun Wong。观察:串珠的海蛇总长度约为25厘米(图1)在潮汐时,观察到在海草之间淹没在浅水中。持续了大约10到20分钟,尽管存在观察者,但它仍然相对保持相对。然后,它开始四处走动,大概是觅食。
海草草地在向各种生物和环境系统提供生态系统服务方面起着至关重要的作用,尤其是在有效捕获和储存碳方面。因此,海草被包括在应对气候变化挑战的计划中。但是,泰国的海草碳固执的数据有限,尤其是在本地地区。因此,本研究旨在评估雷恩省Ao Pae的沉积物和海草中的碳储存。分析的重点是沉积物深度和水分含量的影响。在2022年5月的退潮季节收集了沉积物和海草样品。采样区域分为两个区域:一个具有海草存在(9个站点),另一个存在海草不存在(4个站点)。沉积物,分为六层10厘米。结果表明,在0-10 cm的深度(22.82±2.08%)的沉积物中观察到最高的有机碳含量。此外,有机碳含量与海草存在区域中的沉积物水分含量显着相关(p <0.05)。此外,平均地下有机碳(1.93±0.29%)超过了地上碳(1.66±0.28%),与没有海草相比,海草站的沉积物具有更高的有机碳含量。这些发现强调了海草作为雷恩省AO PAE中重要的碳隔离者的潜在作用。关键字:海草;蓝色碳;碳存储;沉积物有机碳