Deloitte为近90%的财富Global500®和成千上万的私营公司提供了行业领先的审计和保证,税收和法律,咨询,财务咨询和风险咨询服务。我们的员工提供了可衡量的持久结果,有助于增强公众对资本市场的信任,使客户能够转变和繁荣,并带领朝着更强大的经济,更公平的社会和可持续的世界迈进。在其175年以上的历史上建造,德勤跨越了150多个国家和地区。了解德勤在全球大约有41.5万人在www.deloitte.com上产生重要的影响。
©2024 Infosys Limited,印度班加罗尔。保留所有权利。Infosys认为本文档中的信息截至其发布日期是准确的;此类信息如有更改,恕不另行通知。Infosys承认本文档中提到的商标,产品名称和其他知识产权的其他公司的专有权利。除非明确允许,均不能复制,存储在检索系统中,或以任何形式或以任何方式传输,无论是在未经本文档中的Infosys Pressys limited和/或任何命名的知识财产权持有人的事先许可的情况下以电子,机械,印刷,影印,记录或其他方式传输。均不能复制,存储在检索系统中,或以任何形式或以任何方式传输,无论是在未经本文档中的Infosys Pressys limited和/或任何命名的知识财产权持有人的事先许可的情况下以电子,机械,印刷,影印,记录或其他方式传输。
摘要 随着纳米技术领域的进步,纳米图案化不仅在高附加值产品中得到广泛应用,而且在廉价产品中也得到广泛应用。此外,大规模生产廉价产品所需的技术,如连续卷对卷 (R2R) 工艺,正在迅速兴起。人们对亚微米和纳米模具的制造进行了广泛的研究。在这项研究中,我们提出了一种激光干涉曝光来制造可用于连续卷对卷图案化的纳米图案圆柱形模具。此外,我们还展示了使用棱镜在圆柱体(长度为 300 毫米,直径为 100 毫米)上制造无缝图案的螺旋曝光工艺。使用 UV 树脂将图案转移到平面模具上,并使用场发射扫描电子显微镜进行测量;测量结果显示图案均匀,具有纳米图案线宽(75 纳米)和亚微米周期(286 纳米)。观察结果表明,使用激光干涉光刻制造卷模的方法是一种快速可靠的无缝图案化方法。
物联网和大数据市场预计将呈指数级增长。2020 年,物联网连接设备数量约为 87 亿台,预计到 2030 年这一数字将增至 254 亿台。我们日益互联的世界将需要覆盖提供物联网通信的传感器。然而,目前地球表面约 80% 的区域尚未提供任何连接,这对农业、能源、物流、海事和许多其他行业来说是一个重大挑战,它们需要监控位于偏远或恶劣环境地区的资产。此外,随着地面攻击的增加,公共、工业或商业系统被黑客入侵的例子也呈指数级增长,造成数十亿美元的损失和其他危险。因此,确保生成、交换和处理的数据准确且可信变得越来越重要。这需要为每个传感器提供可信的数字身份,并启用具有强大硬件和软件安全功能的生态系统
1神经科学系,加利福尼亚大学圣地亚哥分校,加利福尼亚州,美国,美国,阿尔茨海默氏病2美国弗吉尼亚大学5号,美国夏洛茨维尔,美国,美国6营养生物标志物实验室,MRC流行病学单位,剑桥大学,剑桥大学,剑桥,英国,7 C 2 N诊断,圣路易斯,密苏里州圣路易斯,美国密苏里州,美国8号,精神病学系,纽约学院,纽约学院,纽约学院,校长,纽约学院。哥德纳堡,瑞典,9临床神经化学实验室,Sahlgrenska大学医院,瑞典莫恩达尔,瑞典10号神经退行性疾病系,UCL神经病学研究所,UCL神经病学研究所,皇后广场,伦敦皇后广场,英国伦敦,英国dementia Research Institute,UCL,UCL,UCL,联合国大学,YEGEN KINDER SULSITAL,BERDER KOND KOND KOND KOND KOND KOND KODER,香港,中国,威斯康星州13岁的阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学 - 麦迪逊分校 - 美国威斯康星州麦迪逊大学,美国美国,美国麦迪逊,14伯克神经学研究所,威尔·康奈尔医学,韦尔·康奈尔医学
分析我们的研发中心的基因治疗的高质量,具有成本效益的病毒载体的技术转移
随着航空航天,通信和能源存储系统中高功率电子设备的快速发展,巨大的热量频率对电子设备安全构成了越来越多的威胁。与几个微厚度的薄膜相比,高质量的石墨烯厚纤维(GTF)超过数百微米厚度是一个有希望的候选者,可以解决由于较高的热量量,以解决热管理挑战。然而,传统的GTF通常具有较低的导热率和弱的机械性能,归因于板板比对和脆弱的界面粘附。在这里,提出了一种无缝的键合组件(SBA)策略,以使GTF超过数百微米,具有可靠的合并界面。对于厚度为≈250μm的GTF-SBA,平面内和平面导热率分别为925.75和7.03 w m-1 K-1,大约是传统粘合剂组装方法制备的GTF的GTF的两次和12次。此外,GTF-SBA即使在77 k循环到573 K的严酷温度冲击后,也表现出了显着的稳定性,从而确保了其在极端条件下长期服务的环境适应性。这些发现提供了对石墨烯大块材料界面设计的宝贵见解,并突出了高性能石墨烯材料在极端热管理需求中的潜在应用。
摘要:目的:评价无缝隙护理模式在纤维支气管镜检查(FB)中的应用效果。方法:选取2017年6月1日至2019年5月31日我院呼吸科行FB检查的患者200例作为研究对象,随机分为无缝隙护理(SN)组100例和常规护理(RN)组100例。RN组给予常规护理,SN组在常规护理模式基础上融入无缝隙护理。对比2组患者焦虑自评量表(SAS)评分、血清炎性因子水平、术后不良反应、诺丁汉健康量表(NHP)评分及护理满意度。结果:根据SAS评分系统结果显示,2组患者入院时焦虑程度相似(P>0.05);术前SN组焦虑水平显著低于入院时(P<0.001)及同期RN组(P<0.001);SN组痰中带血、咳嗽、低氧血症、心律失常发生率显著低于RN组(P分别为0.027、0.009、0.037、0.030)。FB前RN组与SN组血清IL-6、IL-17、TNF-α、IL-10水平比较,差异均有统计学意义(P分别为0.006、0.320、0.410、0.025)。无缝隙护理后,SN组体力活动、疼痛、睡眠、情绪反应、精力等NHP评分与RN组比较,差异均有统计学意义(P<0.001)。 SN组患者满意度为91.0%,RN组患者满意度为71.0%,差异有统计学意义(P<0.001)。结论:全程无缝隙护理策略可降低FB术前焦虑水平,减少术后不良事件发生,提高FB术后生活质量和满意度,具有较高的实用价值和推广价值。
随着航空航天,通信和能源存储系统中高功率电子设备的快速发展,巨大的热量频率对电子设备安全构成了越来越多的威胁。与几个微厚度的薄膜相比,高质量的石墨烯厚纤维(GTF)超过数百微米厚度是一个有希望的候选者,可以解决由于较高的热量量,以解决热管理挑战。然而,传统的GTF通常具有较低的导热率和弱的机械性能,归因于板板比对和脆弱的界面粘附。在这里,提出了一种无缝的键合组件(SBA)策略,以使GTF超过数百微米,具有可靠的合并界面。对于厚度为≈250μm的GTF-SBA,平面内和平面导热率分别为925.75和7.03 w m-1 K-1,大约是传统粘合剂组装方法制备的GTF的GTF的两次和12次。此外,GTF-SBA即使在77 k循环到573 K的严酷温度冲击后,也表现出了显着的稳定性,从而确保了其在极端条件下长期服务的环境适应性。这些发现提供了对石墨烯大块材料界面设计的宝贵见解,并突出了高性能石墨烯材料在极端热管理需求中的潜在应用。
摘要:考虑到精确的农业,最新的技术发展引发了几种新工具的出现,这些工具可以帮助自动化农业过程。例如,在果园中准确检测和计数苹果对于最大程度地提高收获和确保有效的资源管理至关重要。但是,传统的技术在果园中识别和计算苹果存在一些内在困难。为了识别,识别和检测苹果,Apple目标检测算法(例如Yolov7)表现出很大的反射和准确性。但遮挡,电线,分支和重叠构成严重的问题,以精确检测苹果。因此,为了克服这些问题并准确识别苹果并在复杂的背景下从基于无人机的视频中找到苹果的深度,我们提出的模型将多头注意系统与Yolov7对象识别框架结合在一起。此外,我们还提供了实时计数的字节式方法,这可以保证对苹果的有效监控。为了验证我们建议的模型的功效,对当前的几种Apple检测和计数技术进行了彻底的比较评估。结果充分证明了我们的策略的有效性,该方法不断超过竞争方法,以相对于精度,回忆和F1分别获得0.92、0.96和0.95的非凡精确度,而低MAPE的低MAPE为0.027。