美国以超过4吉瓦的能力领导着世界地热力,足以供应约300万所房屋。对于地热能产生,需要三个关键要素:地下岩石的热量,一种足够的流体将热量带到表面,以及通过热岩石运动的流体运动。裂缝(例如裂缝)的小途径有助于自然系统中这种流体流动,其中存在热,流体和渗透率会产生地热资源。传统的水热资源都有所有三个要素,但是EGS技术通过将液体注入热岩石中以增强发电的条件来创建人造储层。这可以为数百万户主提供动力,而Geovision的2019年分析表明,到2050年,超过4000万座房屋,而2023年的地热射击增强了分析,分析了大约6500万户房屋的更高潜力。此外,由于这些岩层也容纳热能,还探索了电力生产的沉积地热资源。地热发电厂从地下储层中利用液体来驱动发电的涡轮机,然后将其重新注射回到水库中。地热发电厂是罕见的自然发生,蒸汽直接为涡轮发电而发电。托斯卡纳的Larderello地热发电厂是世界上最古老的干蒸汽发电厂。干蒸汽发电厂在加利福尼亚州的间歇泉中使用蒸汽技术,如今仍然很重要。地热发电厂利用地球内部的能量发电。然而,由于提取率高,功率已降至1.5 gw。最古老的地热植物建于1904年,在意大利建造,依靠热地下温度来产生蒸汽,这驱动涡轮机发电。这些植物受其高温要求和低流量流速的限制。最大的地热电来源是北加州的间歇泉的干蒸汽厂,该厂于1924年首次开始钻探。在1980年代后期的最高生产中,它产生了2吉瓦的电力,可与两个大型煤炭或核电站相当。闪存循环蒸汽厂是最常见的类型,因为它可以利用较低的温度和压力。必须将水在180°C以上加热以产生蒸汽,然后驱动涡轮机。将剩余的水循环回井中,并用于加热目的。此方法由于更复杂的组件而增加了成本,但仍与常规电源竞争。二进制循环植物预计将来将成为最广泛使用的地热植物类型,因为它们可以利用低温水利用能量。他们使用具有低沸点流体的二次环,例如戊烷或丁烷,该循环蒸发和驱动涡轮机。此方法允许更广泛地应用地热能,尤其是在已知热点外部。在此处给定文章
位置 大马尼斯蒂克湖面积为 10,346 英亩(Breck 2004),位于密歇根州上半岛卢斯县和麦基诺县边界的马尼斯蒂克河流域(乡镇 44 和 45 N,范围 11 和 12 W)(图 1)。在卢斯县,赫尔默(莱克菲尔德乡镇)位于大马尼斯蒂克湖的东北岸。在麦基诺县,柯蒂斯(波蒂奇乡镇)位于大马尼斯蒂克湖的东南偏南,毗邻南马尼斯蒂克湖北岸。大马尼斯蒂克湖是马尼斯蒂克湖中最大的一个,也是密歇根州第七大内陆湖(Laarman 1976),平均深度为 10 英尺,最大深度为 23 英尺。地质和地理 大马尼斯蒂克湖位于马尼斯蒂克基岩地质构造内,该构造由一条薄薄的白云岩和石灰岩带组成,横跨三角洲县和麦基诺县 (MDNR 2001)。该地区的岩石类型主要是沉积岩,为大马尼斯蒂克湖的亲石产卵鱼类(如大眼鲷)提供了丰富的栖息地。大马尼斯蒂克湖周围的地表地貌主要由冰碛(45.6%)和湖泊/沙丘(16.6%)组成。细小的“沙丘”基质(如沙子)会填充正在发育的鱼卵和胚胎占据的间隙,从而对大马尼斯蒂克湖近岸产卵栖息地造成危害。大马尼斯蒂克湖附近的土地覆盖类型包括森林(40.7%)、湿地(37.0%)、水域(11.6%)、农业(4.8%)、城市(3.8%)、草地/灌木(1.8%)和荒地(0.3%)(图 2)。该地区的地表地质由大量粗糙(62.2%)的纹理材料以及无纹理的有机材料(37.8%)组成。粗糙纹理材料遍布整个湖泊,有助于提供近岸产卵栖息地。粗糙纹理材料还促进了湖泊较深区域的冷地下水交换,冷水物种和冷水物种(例如,分别是 Walleye 和 Cisco)都生活在那里。其余的湖岸由无纹理材料(沙子和有机材料)组成,地下水渗透性低到中等(Madison 和 Lockwood 2004)。大马尼斯蒂克湖周围的土壤类型以草本有机物和沙壤土冰川沉积物为主(USDA 2024)。岛屿群大马尼斯蒂克湖共有四个岛屿,包括福斯特岛、格林菲尔德岛、古尔岛和伯恩特岛,面积分别约为 8、2、1 和 1 英亩。其中一个岛屿(即格林菲尔德岛)已基本开发,其余三个则处于自然状态。流域描述大马尼斯蒂克湖北部的赫尔默溪和南部的波特奇溪水源(图 1)。赫尔默溪从北马尼斯蒂克湖向西南流入大马尼斯蒂克湖。位于赫尔默溪上的特雷斯勒大坝限制了湖泊之间上游鱼类的通道。波蒂奇溪从南马尼斯蒂克湖向东北流入大马尼斯蒂克湖,并设有水位控制
可再生能源与人工智能和数据科学理学硕士:地质与地球物理学 (READY) 学位将为您提供表征浅层地下结构所需的地质学、近地表地球物理学和计算技能,以用于广泛的可再生能源应用。为了实现全球绿色能源目标,未来二三十年,海上可再生能源项目的数量必须大幅增加。海上风电是一种海上可再生能源选择,随着技术的成熟,波浪和潮汐预计会变得越来越重要。本课程将为您提供海上数据收集经验和行业接触机会。作为一系列理学硕士课程的一部分,该课程与地球科学与工程系提供的其他课程不同,因为它将带您完成一门课程,使您能够深化与尖端数据科学、人工智能、机器学习和相关计算和观察技术相关的知识和技能,以及它们在可再生能源应用的地下结构表征中的应用。该项目目前得到了可再生能源领域多家公司的支持(包括 SSE、RWE、Ørsted、Vattenfall 和 Arup),这些公司为课程开发做出了贡献,并将组建行业咨询委员会,以确保所教授的技能与能源转型所需的技能相匹配。在开始时,您需要熟悉使用 Python 的计算机编程,并且在应用程序中使用 Python 的证据将是一个选择标准。我们将提供并建议所有成功的申请者在线完成我们的学前培训材料,以便您在课程开始前继续复习和更新您的知识。在攻读理学硕士期间,我们将通过高级编程课程发展您的知识,并通过非评估课堂测验形式的形成性反馈为您的旅程提供支持,以供自我反思和小组活动。您还将学习数据科学、数值方法和机器学习。在整个课程中,您将把这些概念应用于可再生能源应用的地下场地特征描述问题,包括沉积地质学、地貌学、工程地质灾害、高分辨率地球物理学、土力学和岩土工程。您将与其他从事应用计算机科学、数据科学和机器学习的学生一起上课和做项目。对于您的暑期研究项目,您将有机会在行业中进行可选的实习,或在帝国理工学院“内部”学者的监督下开展项目。公司项目和“内部”项目将向所有学生公布,您将被要求按顺序或偏好选择您喜欢的项目。我们鼓励您与工作人员交谈,以帮助制定和决定合适的项目。对于一些公司主办的项目,您将被要求将您的简历发送给公司主管,然后公司主管将选择他们喜欢的候选人。所有公司项目除了行业主管外,还有一位帝国理工学院主管。对于帝国理工学院分配的项目,将使用算法根据学生偏好分配项目,您将获得两位帝国理工学院主管。学生不需要自己寻找公司主管或开发项目。如果您有/符合以下条件,本课程将适合您:
(C0.1)对您的组织进行一般描述和介绍。我们是一支由7,000多个能源问题解决者组成的团队,努力移动,产生和存储北美的能源。今天,我们正在采取行动使能源更可持续和安全。我们正在创新和现代化,以减少业务的排放。,我们正在提供新的能源解决方案(从天然气和可再生能源到碳捕获和氢),以帮助其他企业和行业脱碳。一路上,我们投资社区并与邻居,客户和政府合作,以建立未来的能源系统。天然气管道 - 我们的93,700公里(58,200英里)网络为最大,最具竞争力的资源盆地和价值最高的需求市场提供服务。跨越加拿大,美国和墨西哥,我们安全地提供了满足北美能源需求所需的天然气的25%以上。我们的美国天然气系统目前将大约30%的液化天然气(LNG)进料加速移动,我们正在建造西部加拿大沉积盆地(WCSB)天然气的第一个直接连接,以通过沿海加油机管道到达LNG市场。天然气是一种安全可靠的燃料,随着世界减少对高碳能源的依赖,在能源转变中起着重要作用。这是一种丰富而清洁的燃烧燃料,它将继续后退可再生能源的间歇性。北美石油生产预计将在未来几十年中仍然是燃料混合物的强大而重要的一部分。液体管道 - 我们的4,900公里(3,000英里)的液体管道系统直接将全球最大的石油储量WCSB连接到美国中西部和墨西哥湾沿岸最大的炼油市场(总计约1400万bbl/d)。以长期商业结构和96%的投资级或同等客户为基础,这种不可替代的系统为高度战略性的走廊提供服务。稳定且可靠的WCSB原油供应将在十年结束之前增长600,000 bbl/d,我们的主要市场预测在我们的主要市场中的使用将在2050年之前保持强劲。电力和能源解决方案 - 我们对提供约4,300兆瓦(MW)的容量的设施拥有或具有利益,其中约75%的无排放量。我们的电力投资组合受长期合同的支撑超过92%,我们在美国获得了600兆瓦的收入和416兆瓦的加拿大电力购买协议,从风能和太阳能设施中获得了购买协议。我们继续进行众多能源转型增长计划,包括增加能力并延长布鲁斯电力核设施寿命的机会,同时还继续探索或投资
由降水所产生的在自然界中比比皆是,从热液通风口的烟囱到洞穴中的苏打水。 它们的形成受到预言发生的化学梯度的控制,定义了模板生长结构的表面。 我们报告了一种自组织的周期性模板,在铁 - 硫酸盐溶液中用电化学产生肾小管结构;铁氧化物沉淀在气泡表面,这些气泡在管缘上徘徊,然后脱离,然后留下一圈材料。 通过氨从气泡扩散到溶液中,酸 - 碱和氧化还原梯度自发产生,在管壁内组织径向构成分层,这是一种通过含有凝胶含量的摄氏4的氨基氧化物形成的复杂的液体氧化物模式在更大范围内研究的机制。 当壁内形成磁铁矿时,管可能会在外部磁场中弯曲。 在speleothem形成中与自由边缘问题的联系被强调。 产生管状结构的 t繁殖过程跨越了大量的尺度和机制。 在一个极端处是铁硫化物的烟囱,高于水热通风孔(1),在上升,酸性,酸性,热,富含矿物质的液体和较冷的海水周围的碱性,碱性,富含矿物质的液体和更冷的海水之间形成。 有毫米尺度的空心''botryoidal'(类似葡萄的)簇和硫化铁硫化铁的烟囱的化石证据(2)。 管状化石的“藻类结构”,可能是生物源,在带状铁的沉积层中发现(3)。 1)。在自然界中比比皆是,从热液通风口的烟囱到洞穴中的苏打水。它们的形成受到预言发生的化学梯度的控制,定义了模板生长结构的表面。我们报告了一种自组织的周期性模板,在铁 - 硫酸盐溶液中用电化学产生肾小管结构;铁氧化物沉淀在气泡表面,这些气泡在管缘上徘徊,然后脱离,然后留下一圈材料。通过氨从气泡扩散到溶液中,酸 - 碱和氧化还原梯度自发产生,在管壁内组织径向构成分层,这是一种通过含有凝胶含量的摄氏4的氨基氧化物形成的复杂的液体氧化物模式在更大范围内研究的机制。当壁内形成磁铁矿时,管可能会在外部磁场中弯曲。在speleothem形成中与自由边缘问题的联系被强调。t繁殖过程跨越了大量的尺度和机制。在一个极端处是铁硫化物的烟囱,高于水热通风孔(1),在上升,酸性,酸性,热,富含矿物质的液体和较冷的海水周围的碱性,碱性,富含矿物质的液体和更冷的海水之间形成。有毫米尺度的空心''botryoidal'(类似葡萄的)簇和硫化铁硫化铁的烟囱的化石证据(2)。管状化石的“藻类结构”,可能是生物源,在带状铁的沉积层中发现(3)。1)。生物源例子包括软体动物贝壳,部分形成,部分是由于通过地幔中的泵送机制维持的化学梯度(4)和某些细菌,以及某些细菌,该阴离子多糖鞘的鞘吸引并吸引金属阳离子,可以产生由生物体细胞体(5)产生的管状结构(5)。最近的工作还确定,从微生物中挤出的多糖链可以充当氧化铁氧化铁沉淀的模板(6),并且细菌细胞的细丝甚至可以用作合成矿化的模板(7)。石灰石洞穴中的Speleothem形成提供了另一种相关的检查。当水向下流动,并徘徊在吊坠下,溶解的二氧化碳量大,提高pH值,并在滴下碳酸钙沉淀。掉落的脱落留下了一块附着在生长管上的材料环;重复此过程会产生直接的“苏打水”或弯曲的‘helictites'(8)。在电气沉积中也证明了气泡上的降水膜形成(9)。最后,树状“硅酸盐花园”(10-12)生长在硅酸钠溶液中,含有金属离子盐,可能来自硅酸盐凝胶膜上的渗透胁迫,现在可以以非常控制的方式研究(13)。我们在这里描述了一个自组织的过程,该过程是根据气泡的模板作用而生长的(图在电化学细胞的阴极生产,这些气泡支持在气体溶液界面形成的沉淀膜。气泡的脱离留下了延伸试管的物质环,过程继续。从机械上讲,这是洞穴中苏打水的增长的相位版本。,气泡以一到几秒钟的间隔脱离,这些
地质学、工程地质学、岩石力学和岩石工程领域已发表论文的一些参考文献 1. Aagaard B.、Grøv E. 和 Blindheim OT (1997):喷射混凝土作为不利岩石条件下岩石支护系统的一部分。国际岩石支护研讨会,地下结构应用解决方案。挪威利勒哈默尔。 2. Aagaard B. 和 Blindheim OT (1999):挪威三条海底隧道穿越极差薄弱区。ITA 世界隧道大会 '99 论文集,奥斯陆,10 页。 3. Aasen O.、Ödegård H. 和 Palmström A. (2013):阿尔巴尼亚加压引水隧道规划。挪威水电隧道 II。出版物编号。 22. 挪威隧道协会,2013 年,第 21-27 页。4. Abbiss CP(1979 年):通过地震勘测和大型水箱试验对 Mundford 白垩的硬度进行了比较。Géotechnique,29,第 461-468 页。5. Abelo B. 和 Schlittler F.(1973 年):为玻利维亚中央系统提供额外电力。Water Power,1973 年 4 月,第 121-128 页。6. Aglawe JP(1998 年):高应力地面地下洞室周围的不稳定和剧烈破坏。加拿大金斯敦皇后大学采矿工程系博士论文。正在进行中。7. Aitcin PC、Ballivy G. 和 Parizeau R.(1984 年):浓缩硅灰在灌浆中的应用。创新水泥灌浆,ACI 出版物 SP-83,1984 年,第 1-18 页。 8. Aksoy OC、Geniş M.、Aldaş UC、Özacar V.、Özer CS 和 Yılmaz Ö.(2012 年):使用经验方法确定岩体变形模量的比较研究。工程地质学 131-132,19-28。 9. Aldrich MJ(1969 年):孔隙压力对 Berea 砂岩受实验变形的影响。美国地质学会通报,第 80 卷,第 8 期,第 1577-1586 页。 10. Aleman,VP(1983 年):悬臂式掘进机的切割率预测,隧道和隧道施工,第 23-25 页。 11. Alemdag S.、Gurocak Z. 和 Gokceoglu C. (2015):一种基于简单回归的岩体变形模量估算方法。J. Afr. Earth Sci. 110,75–80。12. Alemdag S.、Gurocak Z.、Cevik A.、Cabalar AF 和 Gokceoğlu,C. (2016):使用神经网络、模糊推理和遗传编程对分层沉积岩体的变形模量进行建模。工程地质学 203,70–82。13. Allen H. 和 Johnson AW (1936):确定土壤膨胀特性的测试结果。公路研究委员会会议记录,美国 16,220。14. Almén KE.、Andersson JE.、Carlsson L.、Hansson K. 和 Larsson NA。 (1986):结晶岩的水力测试。单孔测试方法的比较研究。SKB 技术报告 86-27。Svensk Kärnbränslehantering AB。15. Alonso E. 和 Berdugo IR (2005):含硫酸盐粘土的膨胀行为。Proc. Int. Conf. Problematic Soils。法马古斯塔,2005 年。
169图49。 toole)带有Atrahaxis spinosa L. ..................................................................................................................169图49。toole)带有Atrahaxis spinosa L. ..................................................................................................................
1。引言目前对欧洲至关重要的有效可再生能源发电技术是必不可少的。欧盟对将温室气体排放量减少至少80%的承诺还需要对可靠的碳捕获和存储方法进行改进和商业化,除了增加了可再生能源的市场吸收。GECO项目应对展示具有成本效益的技术的挑战,以通过重新注入或将其转化为商业产品来限制地热植物的排放。由涉及GECO合作伙伴的前项目开发的气体捕获和注入技术将不仅在破裂的玄武岩储层中实施,而且还将在该项目的四个野外地点,碎石,变质和沉积物储层中向前迈进。本文件列出了地热排放控制技术的路线图,因此,预计基于不同位置的现场示范,可在不同地点进行地热气体(以及来自其他来源的二氧化碳)的路线图将提供给利益相关者,即工厂运营商或制定者。2。地热排放的当前状态地热能是用于加热或发电的可再生能源,并且其利用率可能导致温室气体(GHG)排放,尽管与传统的基础负载热能发电设施相比,它们相对较小。然而,随着地热部门的扩展,正在利用更多的地热资源,其储层流体中含量较高的地热资源正在被利用,从而引起了人们对温室气体排放的关注。对地热产量产生的温室气体排放的了解有限,并且在植物一生中排放的趋势仍然存在不确定性,以及地热功率产生如何影响通过地球表面的天然温室气体排放。地热发电的国家监管框架的国家监管框架因国家而异。温室气体自然存在于所有地热流体中,地热流体中的主要NCG是二氧化碳(CO 2),通常占NCG总含量的95%以上。地热液中的其他相关温室气体是甲烷(CH 4),其浓度通常是数百分之十,达到了十分之一百分之十,但在极少数情况下可能占总气体的1.5%以上。但是,地热发电厂的大多数有关温室气体排放的数据仅是指CO 2。GECO项目正在使用深层地热资源来产生电力,这已经与设定计划目标中概述的发电成本具有成本竞争力。冰岛,意大利和土耳其的生产地点的成本低于0.077欧元/千瓦时。但是,由于处理CO 2,H 2 s和其他有害气体所需的排放疗法,预计成本将增加。因此,对于地热行业来说,展示了显着减少或消除这些排放的方法至关重要。GECO项目旨在通过实施新型的气体捕获方法以及存储或重用,以经济和环保的方式进行经济和环境友好的方式。深度地热能的设定计划目标包括将地热安装的整体转换效率提高10%,在2050年将其提高到20%,以及将生产成本降低至10欧元/千克以下的电力和5欧元/千瓦时的热量/千瓦时。
Bacteria Spirit Creek Augusta,佐治亚州执行摘要第303(d)条《联邦清洁水法》(CWA)要求开发305(b)/303(d)水域清单。佐治亚州环境保护部(GA EPD)根据40 CFR第130.7(b)(4)部分和美国环境保护署(美国EPA)提供的指导,为佐治亚州河流和溪流开发此列表。2022第303(d)列表在里士满县确定了精神溪,因为违反了地表水质细菌标准,因此不支持指定用途。从SR56到萨凡纳河的岩石溪的下部七英里部分被列为粪便大肠菌群(FC)细菌损伤,原因是由于非点源和城市径流。Spirit Creek损坏的细分市场列表基于GA EPD在2018年收集的第2级数据。只收集了四个样本;一个在三月,八月,十月和十一月。在四个收集的样品中,只有一个样本,八月收集,超过了单个样品阈值值,并被用来将7英里的Spirit Creek覆盖在受损的水域清单上。在我们的专业意见中,该覆盖范围应该在第3类(评估待定)中放置在收集其他数据之前。诸如评估参数以及其他数据的结果(包括现场历史数据)的结果等因素。Augusta MS4排放量受到GA EPD采样位置附近的限制,并且可能有很高的其他因素导致2018年8月29日收集的样品。历史数据摘要作为图表A(第9/9页)。以前列出了同一细分市场,佐治亚州奥古斯塔(Augusta)收集了足够的几何均值数据,以在2006年至2010年间将该细分市场提升。本工作计划的目的是遵守奥古斯塔(GA)地区广泛的国家污染物消除系统(NPDES),市政独立的雨水系统下水道系统(MS4)许可证以及一般实施的集成管理控制措施,以管理最大程度上可行的涉及的已确定污染物(MEP)。简介奥古斯塔(Augusta)位于佐治亚州中部的萨凡纳河附近。它受哥伦比亚县北部和西北的边界;麦克杜菲县和杰斐逊县西南;南部的伯克县;以及东部的萨凡纳河和南卡罗来纳州(图1)。奥古斯塔(Augusta)位于佐治亚州亚特兰大以东约150英里处,南卡罗来纳州哥伦比亚西南约68英里。该县涵盖了约324平方英里,其中近75%由奥古斯塔服务。大多数奥古斯塔位于上沿海平原生理省内。然而,包括洛克克里克(Rock Creek)和雷克里克(Rae's Creek)在内的一个小北部位于皮埃蒙特(Piedmont)物理学省。沿海平原通过分层且未固定的海洋沉积岩的底层。Spirit Creek朝着萨凡纳河朝着东方的方向流动。小溪流经艾森豪威尔堡和赫菲尔赛巴社区。流域描述Spirit Creek流域位于里士满县的中部。流域中的土地利用主要是住宅,大量小溪排水口约41,210英亩(64.41平方英里),包括戈登堡的一部分和赫菲尔西巴市。
86/1大学街,加尔各答 - 700073,印度W.B.作为质地,通过大气,水圈,岩石圈和生物圈条件的独特融合在前寒武纪时代的大部分地区沉积,在这些融合中,微生物可能在其起源中起着重要作用。 Banded Iron Formation (BIF) and associated iron ore deposits occupy three distinct provinces (best-preserved basins of the Precambrian period that form Iron Ore Super Group) surrounding the North Odisha Iron Ore Craton (NOIOC) located in eastern India and have been studied in detail along with the geochemical evaluation of different iron ores, suggests that the massive, hard laminated, soft laminated iron ore intricately related with the带状的赤铁矿贾斯珀具有来自BIF的遗传谱系,有助于水热活性的某些输入。 在当前情况下,印度钢铁行业完全取决于高级铁矿石。由于对高质量的铁矿石的需求很高,并且高级矿石的快速耗竭,因此必须强调瘦矿石的慈善物,例如带状的赤铁矿果酱(BHJ)和带状的赤铁矿石英岩(BHQ)作为铁矿石的替代资源。关键词:带有铁的形成,成分,分布,创世纪,北奥里萨邦铁矿石克拉顿,印度。 序列带铁地层形成了地球矿物质的珍宝之一。 1)。86/1大学街,加尔各答 - 700073,印度W.B.作为质地,通过大气,水圈,岩石圈和生物圈条件的独特融合在前寒武纪时代的大部分地区沉积,在这些融合中,微生物可能在其起源中起着重要作用。Banded Iron Formation (BIF) and associated iron ore deposits occupy three distinct provinces (best-preserved basins of the Precambrian period that form Iron Ore Super Group) surrounding the North Odisha Iron Ore Craton (NOIOC) located in eastern India and have been studied in detail along with the geochemical evaluation of different iron ores, suggests that the massive, hard laminated, soft laminated iron ore intricately related with the带状的赤铁矿贾斯珀具有来自BIF的遗传谱系,有助于水热活性的某些输入。在当前情况下,印度钢铁行业完全取决于高级铁矿石。由于对高质量的铁矿石的需求很高,并且高级矿石的快速耗竭,因此必须强调瘦矿石的慈善物,例如带状的赤铁矿果酱(BHJ)和带状的赤铁矿石英岩(BHQ)作为铁矿石的替代资源。关键词:带有铁的形成,成分,分布,创世纪,北奥里萨邦铁矿石克拉顿,印度。序列带铁地层形成了地球矿物质的珍宝之一。1)。除了BIF一词外,这些岩石在不同大陆上以Itabirite,jaspilite,hapite-Quartzite和Xtpocularite的形式知道(Evans,1993)。没有模型来解释带状形成的起源,赢得了一致接受。带状外观是由MM与CM厚的深灰色氧化物与黑色铁氧化物的厚床的亲密相互作用引起的(图。它们发生在地层单元中,厚度为数百米,横向范围内数百甚至数千公里。这些铁地层的大量部分可直接使用,因为低级铁矿石(例如taconite)和其他部分是高级沉积物的蛋白质。与目前对铁矿石的巨大需求相比,现在接近109 T P.A.,带状铁层中可最小的矿石的储量确实很大(James and Sims,1973)。An extraordinary fact emerging from recent studies is that the enormous bulk of iron formations of the world has an amount of at least 1014 t and possibly 1015 t, i.e., 90% or more of the total BIF in the Precambrian, was laid down in the very short time interval of 2500-1900 Ma ago ( James and Trendall, 1982 ) and now represented by the BIF of Labrador, the Lake Superior region of North America, Krivoi Rog和Kursk,苏联和西澳大利亚州的Hamersley集团。尽管BIF在Archaean中很重要,但不能在早期的proterorogic中大规模开发,因为稳定的大陆板通常不存在。与所有其他前寒武纪相比,中国拥有大型且重要的片麻岩托管的古生Bif沉积物。在稳定岩石圈板的发展后,BIF可以同步在很大的区域内放置;这可能发生在板内盆地,肯定在大陆货架上。古老的BIF通常是存在的藻类类型,而这种BLF发育在晚期的Archaean中达到了山峰,并且既出现在高级片麻岩地层和绿岩腰带中。本文代表了对潜在途径的简要回顾,在巨大的前寒武纪BIF沉积的起源中,通过严格研究到目前为止发表的大量文章与该主题有关的大量文章及其经济意义,并特别提及印度事件,保留了不同类型的铁矿石和用途的潜力。矿物学,BIF的组成由二氧化硅(约40-50%)和铁(约20–40%)主导。它们被认为是沉积起源,但始终显示出成岩和变质的夸张,有时会显着改变原始沉积物的成分和矿物学。因此,现在在BIF中发现的主要矿物相,例如赤铁矿(Fe 2 IIIO 3),磁铁矿(Fe 2 IIIFEIIO 4),Chert(Sio 2)和Stilpnomelane(K(k(feiimg,feiiii)8(feiiii)8(si,al)12(a,a,o,OH)27)实际上是次要的次要来源。Proposed primary minerals are ferric hydroxide (Fe(OH) 3 ), siderite (FeII(CO 3 )) (partially secondary), greenalite ((Fe) 3 Si 2 O 5 (OH) 4 ) and amorphous silica ( Klein 2005 ).The iron in BIF originated as dissolved Fe(II) from submarine hydrothermal vents and was subsequently transformed to dissolved Fe(III)在上水柱中,由物有或生物氧化。然后将铁铁迅速水解至铁氧化铁,并定居在海底,随后发生了进一步的转化。
