我们专注于一项非常具有挑战性的任务:在夜间动态场景时进行成像。大多数以前的方法都依赖于常规RGB摄像机的低光增强。,他们不可避免地会在夜间长时间的长时间和动作场景的动作模糊之间面临困境。事件摄像机对动态变化的反应,其时间分辨率较高(微秒)和较高的动态范围(120dB),提供了替代解决方案。在这项工作中,我们使用活动摄像头提出了一种新颖的夜间动态成像方法。具体来说,我们发现夜间的事件表现出时间段落的特征和空间非平稳分布。conse-我们提出了一个夜间活动重建网络(NER-NET),主要包括可学习的事件时间戳校准模块(LETC),以使临时尾随事件和非均匀照明式落后事件保持一致,以稳定事件的spatiotalmorporal分布。此外,我们通过同轴成像系统构建了配对的真实低光事件数据集(RLED),这包括空间和时间对齐的图像GTS和低光事件的64,200个。广泛的实验表明,在视觉质量和泛化能力方面,所提出的方法优于最先进的方法。
第二次量子革命不仅促进了量子科学和技术的研究,也促进了如何最好地教育可能进入这一新兴领域的学生的研究。关于量子科学教育的大部分讨论都集中在学生的概念学习或潜在雇主所期望的技能上;缺乏对实验课程和实验如何促进本科量子教育的研究。为了开始了解量子实验可能发挥的作用,我们对在本科实验课程中使用单光子和纠缠光子进行实验的教师进行了调查,发现最重要的学习目标之一是“在现实生活中看到量子力学”。为了更好地理解这一目标,我们采访了 15 位接受调查的教师,询问他们了解量子力学对他们意味着什么,以及他们为什么认为这是学生教育的重要组成部分。我们从对这些访谈的定性编码分析中提出了新主题,这些主题开始阐明教师如何看待了解量子力学,以及教师希望了解量子力学(以及更广泛地进行量子实验)将帮助学生实现哪些学习目标。
图1:中大西洋山脊系统显示较高的分辨率回声沿着船只轨道映射,并在卫星数据之间进行卫星数据解释。(Google Earth:Data Sio,NOAA,美国海军,NGA,Gebcodata ldeo-Columbia,NS,Noaalandsat/Copernicus)此EarthlearneNingIdea是一种试图模拟回声数据收集方法的试图,该方法允许科学家绘制海洋底层并解释其板块构造的板块。(本系列中的“激光任务2 - 在波浪上方”显示了卫星方法 - 第2页上的表)。海洋有多深?回声声音是一种技术,其中一种声纳使用声波来确定水深(测深),从而确定海底表面的形状(地形)。声波是从船上的仪器(换能器)上的仪器中射出的,并测量了从海底(双向时间)反射的波浪所花费的时间,并将其转换为海洋深度。这在深渊平原的深水中提供了约100米的分辨率。可以使用D.I.Y.可以在教室中模拟回声声音。激光测量(或激光测距仪) - 手持测量设备,通过将激光从设备发送到目标,并测量反射返回所需的时间,记录两个点之间的距离。这提供了涉及原则的实际证明。(它还补充了第2页的表中所引用的地球“建模海底映射”)
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
亲爱的腐蚀专家们,有句俗话说得好,“只见树木不见森林”。最近,一位来自 EFC 会员协会的代表问了我几个简单的问题,这让我想起了这句话。作为 EFC 主席,我的主要职责是确定 EFC 需要在哪些方面发展并启动相应的流程。然而,我的大部分时间都花在签署文件、协商小型组织变革、解决日常琐事以及讨论个人问题上。没有多少时间可以鸟瞰 EFC。因此,当我被要求回答这些特定问题时,我感到非常振奋,您可以在本期 EFC 通讯中找到这些问题以及我的答案。让我只强调与腐蚀未来相关的一个方面。我是一个坚定的乐观主义者。范式正在缓慢但肯定地发生变化。社会不仅要求快速和立即的解决方案,而且要求可持续的解决方案。考虑整个生命越来越重要
数字视觉技术已成为人道主义治理的重要工具。它们允许从远处监控危机,即使危机地区无法进入,也能够发现侵犯人权行为和难民流动情况。然而,这种“数字人道主义”的政治影响研究不足。本文旨在通过分析数字技术使哪些形式的观察、展示和管理难民营成为可能,以弥补这一空白。为此,本文将难民营政治方面的学术研究与新兴的数字人道主义研究相结合。它提出了“难民营的视觉集合”的概念,以概念化难民营治理中越来越多地采用视觉技术。本文以扎阿塔里和阿兹拉克这两个典型案例(约旦的两个流离失所的叙利亚难民营)为例,概述了这种视觉集合如何以不同的方式演绎难民营——从而带来不同版本的难民营。案例研究揭示了难民营的三种表现形式——作为一种关怀和控制的技术;作为一个政治空间;作为一个政府实验室——并讨论了它们在日常难民营生活中如何相互作用和冲突。
19与观众(观众,读者)是否或在何种程度上同时意识到艺术品的结构元素,例如彩绘表面及其代表性内容,都有与思想哲学和美学哲学有关的广泛讨论。借助理查德·沃尔海姆(Richard Wollheim),穆雷·史密斯(Murray Smith)称这种“双重性”的经验,并认为它是大量艺术品的一部分。参见他的“角色双重性”,《新文学史》 42(2011):277–94。要进行仔细的讨论,包括对综合索赔的一些解散,请参见Bence Nanay,“代表性观看是否需要双重性?',《英国美学杂志》 45(2005):248–57。关于经验的“双重性”的辩论表明,对艺术品接收的心理结构的全面了解比我们对通过角色的眼睛看见的内部焦点的描述还可以提供更多的辩论。我们的目的是采取一些步骤来解释内部焦点,从而有助于大局。感谢一位匿名审稿人提醒我们对“双重性”的讨论以及上述想象力和妄想之间的区别。
● Valeo 和 Seeing Machines 达成战略合作,以扩大汽车市场份额 ● Seeing Machines 收购 Valeo 旗下的德国软件公司 Asaphus ● 收购 Asaphus 为 Seeing Machines 提供了独特的 IP、柏林办事处以及人工智能和机器学习能力的实质性提升 ● Asaphus 目前从事三个正在进行的汽车项目 ● 预计收购在运营基础上不会对现金产生影响 Valeo 市场领先的规模、在高质量摄像头和处理单元(硬件)、软件和系统集成方面的专业知识将补充 Seeing Machines 在驾驶员和乘员监控系统技术方面的领导地位。他们将共同在全球汽车行业寻求机会,以满足 OEM 对客户增强内部座舱体验日益增长的需求,同时满足世界各地重要且不断扩大的安全法规,包括现有的欧洲和中国安全法规。此外,Valeo 将把其驾驶员监控感知系统软件活动转让给 Seeing Machines。这主要得益于 Seeing Machines 收购 Asaphus,Asaphus 是 Valeo 旗下的一家德国公司,总部位于柏林,致力于开发驾驶员和乘员监控软件。与 Valeo 的合作以及对 Asaphus 的收购为 Seeing Machines 提供了一个极具吸引力的机会,通过获得高价值的额外知识产权来加强其核心业务。此外,此次收购将增加互补技能,从而以先进的 AI 和 ML 能力加速公司的功能路线图,优化开发成本并在德国提供更强大的工程人才,而德国是支持 Seeing Machines 在欧洲不断增长的客户群的理想地点。
现有的汽车环境意识的ADAS解决方案(相机,激光镜,超声波等)要求目标在传感器的明确视线中。必须通过某种能源来照亮目标,因此系统会受到灰尘,天气,照明和障碍物的影响。我们使用“倾听”环境的被动声学解决方案来解决这些局限性。它可以听到角落周围或远距离看不见的潜在目标,从而提供预警并改善其他ADAS系统的预警。我们旨在检测包括警笛,接近车辆,自行车甚至行人的各种公路参与者。我们讨论了用例和挑战,提出了基于汽车等级组件的廉价参考体系结构,并以初始验证结果报告了更新的开发状态。