上下文。恒星磁盘截断(也称为星系边缘)是银河大小的关键指标,由气体密度阈值的恒星形成的径向位置确定。该阈值本质上标志着星系中发光物质的边界。准确测量数百万星系的星系大小对于理解在宇宙时间内推动星系演变的物理过程至关重要。目标。我们旨在探索段的任何模型(SAM)的潜力,即设计用于图像分割的基础模型,以自动识别星系图像中的磁盘截断。通过欧几里得广泛的调查,我们的目标是提供大量的数据集,我们的目标是评估SAM以完全自动化的方式测量星系大小的能力。方法。SAM被应用于1,047个磁盘样星系的标记数据集,其中M ∗> 10 10m⊙在红移至z〜1时,来自哈勃太空望远镜(HST)烛台。我们分别使用F160W(H -band),F125W(J -band)和F814W + F606W(I -Band + v -band)HST HST HST滤镜来创建复合RGB图像“欧盟化” HST Galaxy图像。使用这些处理的图像作为SAM的输入,我们在输入数据的不同配置下检索了每个星系图像的各种截断掩码。结果。我们发现了由SAM确定的星系大小与手动测量的星系大小之间的一致性(即,通过在星系光谱中使用恒星磁盘边缘的径向位置),平均偏差约为3%。当排除问题案例时,此错误将减少到约1%。结论。我们的结果突出了SAM以自动化方式在大型数据集上检测磁盘截断和测量星系尺寸的强大潜力。SAM表现良好,而无需大量图像预处理,标记为截断的训练数据集(仅用于验证),微调或其他特定于域特异性适应(例如传输学习)。
I. 简介 脑肿瘤是医学上的一大难题,需要精确的分割和分类来优化诊断和治疗。从历史上看,这些关键问题在很大程度上依赖于医务人员的手动决策,充满时间限制、观察者之间的差异以及越来越大的人类疲劳影响准确性的风险。尽管如此,机器学习的乐观声音,更具体地说是深度学习技术的出现,似乎将脑肿瘤分析引向了辉煌的前景。本研究旨在了解 U-Net 架构在脑分割和肿瘤分类中的作用,同时通过准确、高效和可重复的解决方案彻底改变该领域。借助深度学习,该研究希望克服与手动分析方法和响应式自动化流程相关的不足,这些流程可以持续训练以提供正确的结果。选择 U-Net 架构是一个明智的决定,因为它在生物医学图像分割任务中取得了成功,并且在描绘高级语义特征和细粒度空间映射方面具有固有优势
摘要:肽和蛋白质聚集涉及寡聚物种的形成,但是不同构象的低聚物和大小之间的复杂相互作用使它们的结构阐明变得复杂。使用离子迁移率质谱法(IMMS),我们旨在揭示与tau蛋白的Ac-PHF6-NH 2肽段聚集的早期步骤,从而区分不同的寡聚物种并获得聚集途径的不足。通常被忽略但可以改变肽的聚集倾向的重要因素是末端上限组。在这里,我们证明了IM-MS的使用来探测AC-PHF6-NH 2,AC-PHF6,PHF6-NH 2和未映射的PHF6肽段的骨料形成的早期阶段。使用硫酸氟T荧光测定法和透射电子显微镜确定了四个PHF6段的聚集倾向。开发了一种基于IM后片段化和四极杆选择的新方法 - 开发了QQ-TOF(捕获的离子迁移率)光谱仪,以增强低聚物分配,尤其是对于高阶聚集体。这种方法推动了同种物种的IM识别限制,它们的签名显得彼此近距离,并随着越来越多的低聚物大小而近距离,并为IM-MS数据的解释提供了新的见解。此外,将TIMS碰撞横截面值与波动波离子迁移率(TWIMS)数据进行比较,以评估被困离子迁移率结果中潜在的仪器偏置。这两个IM-MS仪器平台基于不同的离子迁移率原则,并具有不同的配置,从而为我们提供了对保存弱界生物分子复合物(如肽聚集体)的宝贵见解。
电力销售收入包括代表EPG客户向电力市场出售电力的收入以及电力供应的收入。还包括EPGS费用和收入与提供客户可再生证书的市场路线相关。2。直接成本运输成本运输成本涵盖了所有系统费用(TNUOS和DUOS)以及平衡使用系统费用(BSUO)的所有使用。环境和社会义务为环境和社会义务成本支付与可再生能源义务(RO)相关的成本,关税(FIT)的饲料,可再生能源保证的原产能量(在这种情况下投降用于燃料混合披露目的),气候变化征税,差额(CFD)的差额(CFD),容量市场的收费和高电力分配成本(A AHAHEAHIDC)。其他直接成本这些成本与电力交易和不平衡成本以及RCRC有关,以及为客户可再生证书提供市场途径相关的成本。间接成本这些是运行EPG的费用,例如员工,财产和IT成本等。3。EBITDA/EBIT EBITDA,在利息,税收,折旧和摊销前的收益缩写,是净收入盈利能力的替代量度。它是通过将利息,税收,折旧和摊销费用添加到净收入中来计算的,并用于评估公司的盈利能力和财务绩效。ebit,在扣除所得税和利息费用之前的净利息和税收的缩写。ebit用于分析公司核心运营的绩效。
引入了一个新的贝叶斯建模框架,用于分段均匀变量 - 内存马尔可夫链,以及一系列有效的算法工具,用于更改点检测和离散时间序列的分割。建立在最近引入的贝叶斯上下文树(BCT)框架上,离散时间序列中不同片段的分布描述为可变内存马尔可夫链。对变化点的存在和位置的推断。促进有效抽样的关键观察者是,可以精确地计算数据的每个段中的先前预测可能性(在所有模型和参数上平均)。这使得可以直接从变更点的数量和位置的后验分布中进行采样,从而导致准确的估计,并提供结果中不确定性的自然定量度量。也可以以其他额外的计算成本来获得每个细分市场中实际模型的估计。对模拟和现实世界数据的结果表明,所提出的方法是强大的,并且表现效果也不如先进的技术。
摘要:“分布式身份”是指使用分散的标识者(DID)和可验证的凭据(VC)从集中式身份系统的过渡,以实现安全和隐私的身份验证。具有分布式身份,对身份数据的控制将返回给用户,因此由于缺乏单点故障而使基于凭证的AEACK不可能。本研究评估了使用ZTA原理采用分布式身份时获得的安全性改进,尤其是关于分段网络中横向运动的安全性。还考虑了框架的实施规范,方法的优势和缺点,以及兼容性和可概括性问题。此外,该研究强调了隐私和法规依从性,包括一般数据保护法规(GDPR)和加利福尼亚州消费者数据隐私法(CCPA),分析了针对这些问题的潜在解决方案。该研究表明,采用分布式身份可以通过数量级来增强整体安全姿势,从而提供上下文和最小特权的授权和用户隐私。研究建议重新确定技术标准,扩大在实践中分布式身份的使用,并讨论其在当代数字安全环境中的应用。
摘要:“分布式身份”是指使用分散的标识者(DID)和可验证的凭据(VC)从集中式身份系统的过渡,以实现安全和隐私的身份验证。具有分布式身份,对身份数据的控制将返回给用户,因此由于缺乏单点故障而使基于凭证的AEACK不可能。本研究评估了使用ZTA原理采用分布式身份时获得的安全性改进,尤其是关于分段网络中横向运动的安全性。还考虑了框架的实施规范,方法的优势和缺点,以及兼容性和可概括性问题。此外,该研究强调了隐私和法规依从性,包括一般数据保护法规(GDPR)和加利福尼亚州消费者数据隐私法(CCPA),分析了针对这些问题的潜在解决方案。该研究表明,采用分布式身份可以通过数量级来增强整体安全姿势,从而提供上下文和最小特权的授权和用户隐私。研究建议重新确定技术标准,扩大在实践中分布式身份的使用,并讨论其在当代数字安全环境中的应用。
背景:脑疾病的发生与脑连接学专业化中可检测的功能障碍相关。广泛的研究探讨了这种关系,但考虑到低阶网络的局限性,缺乏研究专门研究精神病脑网络之间的统计相关性。此外,这些功能障碍被认为与大脑功能中的信息失衡有关。但是,我们对这些失衡如何引起特定的精神病症状的理解仍然有限。方法:本研究旨在通过研究健康个体的专业化和被诊断为精神分裂症的人的拓扑高阶水平的变化来解决这一差距。采用图理论大脑网络分析,我们系统地检查静止状态功能性MRI数据,以描绘大脑网络连通性模式中的系统级别区分。Results: The findings indicate that topological high-order func- tional connectomics highlight differences in the connectome between healthy controls and schizophrenia, demonstrating increased cingulo-opercular task control and salience interac- tions, while the interaction between subcortical and default mode networks, dorsal attention and sensory/somatomotor mouth decreases in schizophrenia.另外,与健康对照组相比,精神分裂症患者中脑系统的隔离和脑部整合减少可能是早期精神分裂症的新指标此外,我们观察到与精神分裂症患者相比,健康控制中脑系统的分离降低,这意味着在精神分裂症中逐渐隔离和脑网融合之间的平衡在精神分裂症中破坏了,这表明可以恢复这种平衡来治疗这种疾病。
摘要 - 甲状腺结节是一种病变,医生通常需要高级诊断工具来检测和进行后续诊断。有监督的深度学习技术,尤其是生成的对抗网络(GAN),已被用来提取基本特征,检测结节并生成甲状腺面膜。但是,由于识别癌症区域和训练模式崩溃的高成本,这些方法在获得培训数据方面面临重大挑战。因此,本研究提出了一个GAN模型的改进,即用于甲状腺结节分割的像素到像素(Pix2Pix)模型,在该模型中,将发生器与监督损失功能合并,以解决GAN训练期间的不稳定性。该模型使用了具有u-Net体系结构启发的编码码头结构的生成器来产生掩码。该模型的歧视者由多层卷积神经网络(CNN)组成,以比较真实和生成的面具。此外,使用三个损失函数,即二进制跨透明镜丢失,软骰子丢失和jaccard损失,并结合损失gan来稳定GAN模型。基于结果,提出的模型从超声甲状腺结节图像中实现了97%的癌症区域检测准确性,并使用稳定模型对其进行了分割,其发电机损耗函数值为0.5。简而言之,这项研究表明,与半监视分割模型相比,改进的PIX2PIX模型在结节分割精度方面产生了更大的灵活性。关键字 - 甲状腺结节分割,超声图像,深度学习,生成对抗网络,pix2pix,损失功能