ESCC,QML-V或JAN合格产品的ST投资组合包括二极管,双极晶体管,功率MOSFET以及逻辑,接口,模拟和电源管理集成电路。st的专有技术组合包括平面,SIC和GAN(离散),130 nm混合信号CMO,BCD(POWER ICS),SIGE 130 nm和55 nm和55 nm(RF ICS),以及65 nm和65 nm和28 nm Bumb和28 nm Fdsoi(高密度混合和cmignal和Rensignal和Remsignal and Imbers),以及RFF),以及CMF),CMS(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)(CM)。这些技术大多数证明了Rad-Hardness功能。st Rennes Plant是ESCC,QML和JAN认证。它支持从LCC-2到CLGA625的电线粘合陶瓷密封包装,在陶瓷和有机基材上翻转芯片,直至CLGA 1752 / BGA1752。
由 Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH 出版 注册办事处 德国波恩和埃施伯恩 GET.invest Friedrich-Ebert-Allee 36 + 40 53113 Bonn, Germany T +49 228 44601112 E info@get-invest.eu I www.get-invest.eu I www.giz.de © [2021]德国国际合作机构 (GIZ) 有限公司。版权所有。有条件地获得欧盟、德国联邦经济合作与发展部、瑞典国际发展合作署、荷兰外交部和奥地利开发署的许可。出版地点和日期 布鲁塞尔,2021 年 9 月 主要作者 Zach Bloomfield(GET.invest 金融催化剂顾问) 贡献者 Paul van Aalst(GET.invest 金融催化剂团队负责人) Michael Franz(GET.invest) Jeanetta Craigwell-Graham(GET.invest 金融催化剂顾问) Bregje Drion(GET.invest 金融催化剂顾问) Michael Feldner(GET.invest 金融催化剂顾问) Anne Grootenhuis(GET.invest) Daniele Guidi(GET.invest 金融催化剂顾问) Mark Hankins(GET.invest 金融催化剂顾问) Javier Ortiz de Zuniga(GET.invest) Gregor Paterson-Jones(GET.invest 金融催化剂顾问) 本出版物中链接的外部网站的内容始终由其各自的发布者负责。 GET.invest 明确表示不赞同此类内容。本工作文件是在欧盟、德国联邦经济合作与发展部、瑞典国际发展合作署、荷兰外交部和奥地利发展署的支持下编写的。其内容由德国国际合作机构 (GIZ) GmbH 实施的 GET.invest 独自负责,并不一定反映上述支持者的观点。
量子密钥分发(QKD)基于量子物理原理提供无条件的点对点安全性。通过利用中继节点,QKD的安全性可以扩展到更长的距离。然而,中继节点的引入带来了安全性和通信成功率问题。为了解决这些问题,我们提出了一种增强的多路径方案。我们的提案的主要特点如下:1.通过将中继节点的可靠性作为算法输入之一,使该方案更适合部分可信QKD(PTQKD)网络。2.通过使用多段多路径方法增加了攻击者获取完整密钥信息的难度,并提高了PTQKD的安全性。3.自适应路由算法根据节点贡献率、密钥新鲜度和可靠性生成足够数量的不同路径。我们进行了
基因组工程项目通常利用细菌人工染色体 (BAC) 来携带低拷贝数的多千碱基 DNA 片段。然而,全基因组工程的所有阶段都有可能对合成基因组施加突变,从而降低或消除最终菌株的适应性。在这里,我们描述了对多重自动基因组工程 (MAGE) 协议的改进,以提高重组频率和多路复用性。该协议用于重新编码大肠杆菌菌株,以在基因组范围内用同义替代词替换七个密码子。重新编码菌株的 BAC 中包含的 10 个 44 402–47 179 bp 从头合成 DNA 片段无法补充使用单个抗生素抗性标记所导致的相应 33–61 个野生型基因的缺失。下一代测序 (NGS) 用于识别每个片段中必需基因的 1-7 个非重编码突变,而 MAGE 反过来证明是一种有用的策略,可以在 BAC 中包含的重编码片段上修复这些突变,因为在修复过程中突变基因的重编码和野生型拷贝都必须存在。最后,使用两个基于网络的工具,使用蛋白质结构和功能调用来预测一组非重编码错义突变对菌株适应性的影响。
基于抽象的分子序列特征测定量度为蛋白质和DNA的研究提供了多功能辅助工具。它们由许多序列数据基搜索程序以及识别单个序列的独特属性使用。对于任何这种措施,重要的是要知道可以纯粹偶然地发生什么。高分段的统计分布已被描述为否则。但是,分子序列将经常产生一些高分段,其中一些合并的序列是顺序进行的。本文介绍了多个HIH得分段得分之和的统计分布,并说明了其应用于识别可能的跨膜段的应用以及评估主体相似性。
3470我们与史蒂夫·赖特(Steve Wright)和其他人在BPA上所做的工作3471相信,实际上,基础设施需要那里,
地球周从 4 月 22 日开始持续到 4 月 26 日奥尔巴尼——为庆祝地球周,纽约州公共服务委员会(委员会)今天批准了尚普兰哈德逊电力快线 (CHPE) 输电线路的两个部分,这是一条由 Transmission Developers Inc. 开发的 339 英里长的输电线路,用于将可靠的清洁能源从加拿大直接输送到纽约市。此外,委员会还批准了对先前批准部分的修改以及对项目的环境兼容性和公共需求证书的修订。“尚普兰哈德逊项目巩固了我们能源系统的骨干,”委员会主席 Rory M. Christian 说。“除了帮助确保清洁能源的未来之外,这类项目还加强了输电系统的安全性和可靠性。尚普兰哈德逊将在我们的综合计划中发挥关键作用,该计划旨在实现本州输电系统的现代化,以便它为所有纽约人提供清洁能源,同时推进我们的气候目标并创造清洁能源就业机会。”这条至关重要的输电线路预计将为纽约人带来 35 亿美元的经济效益,同时在建设期间创造近 1,400 个维持家庭生计的工会工作岗位。该项目是根据纽约州清洁能源标准 Tier 4 而通过竞争选出的,被认为是一项关键项目,将有助于实现纽约州《气候领导和社区保护法》的目标,即到 2030 年全州 70% 的电力来自可再生能源,从而实现零排放电网。这个 1,250 兆瓦的项目预计将为 100 多万户家庭供电,并将在全州减少 3700 万公吨的碳排放,相当于每年减少 50 多万辆汽车上路。输电线路预计将于 2026 年春季全面投入运营。今年的地球周从 4 月 22 日持续到 4 月 26 日。Tier 4 计划是委员会清洁能源标准的一部分,旨在以经济有效和负责任的方式促进向纽约市输送大量可再生能源,纽约市是纽约州依赖老化的化石燃料发电的地区,主要位于服务不足的社区。这些社区遭受着最严重的空气质量问题和化石燃料排放对健康的影响,迫切需要提高电网的可靠性和弹性。
减少或消除温室气体排放的电气对于减轻气候变化至关重要。但是,我们的制造和运输基础设施的很大一部分将难以理用,并且/或将继续使用碳作为关键组成部分,包括航空,重型和海洋运输和化学工业。在此路线图中,我们探讨了多学科方法如何使我们能够关闭碳循环并通过将这些难以振兴的区域以及那些继续需要碳的碳化力来创造循环经济。我们讨论了这两种方法:开发碳替代品并提高了通过分离实现的碳的能力。此外,我们认为共同设计和使用驱动的基础科学对于达到积极的温室减少气体目标至关重要。