RRAP 项目的一个关键成果是确定了通往华盛顿西部的优先公路路线,这些路线的抗震能力比类似路线更强,将能够更好地支持资源向受灾地区的运输。优先投资这些公路路线可能会进一步提高它们在 CSZ 地震前的抗震能力,并可能加速它们在灾后响应活动中的修复和重新开放。这些发现基于对公路交通基础设施的广泛网络和系统级评估,使用与华盛顿州交通部 (WSDOT) 直接合作开发的地震筛选工具。华盛顿州自然资源部 (DNR)、华盛顿地质调查局 (WGS) 和美国地质调查局 (USGS) 提供的大量地质信息进一步支持了这些分析,
• 完成了县属建筑(包括医院和警长设施)的设施状况评估。第一轮状况评估于 2014 年至 2019 年期间完成。重新评估将每五年进行一次,从 2019 年秋季开始,针对表演艺术综合体。 • 启动为期五年、价值 7.5 亿美元的设施再投资计划,反映了长期的财务承诺,旨在解决积压的关键延期维护需求。 • 启动地震安全计划,以评估地震期间发生损坏的风险,并根据优先级加固建筑物。这包括开始对 Kenneth Hahn 行政大厅进行抗震升级。 • 持续利用详细的建筑信息来确定、估算成本并确定建议的设施再投资(延期维护)项目的优先顺序,以获得资金,并指导投资决策。
符合 NRC 通用设计标准、结构、部件和系统的分类、风和龙卷风载荷、水位(洪水)设计、导弹防护、针对与管道假设破裂相关的动态效应的防护、抗震设计、I 类结构设计、机械系统和部件、机电设备的抗震和动态鉴定、环境设计和鉴定。
,比该地区最大可信事件小得多。但是,由于地震中断了旧金山正在进行的世界职业棒球大赛,因此引起了全世界的关注。此外,虽然对州公路系统的整体损坏很小,但一些重要桥梁却遭到严重损坏。这些事实,以及两座桥梁上不幸的人员伤亡,使得加州运输部 (Caltrans) 在地震后成为批评的对象。一些人认为,加州运输部疏忽大意,允许公众使用抗震性能不足的州立桥梁。加州运输部是否应该知道有哪些桥梁无法抵御大地震?加州运输部是否应该更换所有抗震性能不足的桥梁?这些问题促使州长 Deukmejian 成立了一个调查委员会,以确定桥梁损坏的原因。委员会花了几个月的时间举行听证会,以确定加州运输部在地震前制定的抗震政策。 1990 年 5 月 31 日,委员会发布了报告《与时间竞争》(Thiel,1990 年)。他们发现,加州运输部在改进新桥的抗震设计程序方面做得很好。他们认为,桥梁损坏的主要原因是加州运输部的抗震加固计划资金不足。他们建议加州运输部增加抗震加固计划的资金,资助额外的抗震研究,利用更多最先进的解决方案
本节为教育工作者提供额外的支持和信息。这些策略旨在让学生积极参与主题,并提供动手实践和动脑观察并探索主题,包括用于科学探究、实验和基于问题的任务的真实数据资源,这些任务结合了技术、技术和工程设计。所选资源是与特定内容声明直接相关的印刷或基于网络的材料。它并非是一份规定性的课程清单。• 建造一个可以工作的地震仪是一种将设计和工程与科学中对地震和波浪的理解结合起来的方式。如果学生没有真正经历过地震,将地震与地球的实际运动联系起来可能会很困难。使用地震仪并解释来自工作地震仪的地震数据可以帮助展示运动。教授工程资源包括有关建造地震仪的信息。还有关于工程和设计过程以及如何与八年级学生一起使用它们的特定资源。其他建造地震仪的例子可以在网上找到。重要的是让学生测试和试验该仪器,以了解它如何测量地球运动。 • 美国地质调查局提供了有用的背景数据,将地球结构与板块构造联系起来。还提供了显示实时地震数据(包括俄亥俄州的数据)和可操作的交互式地震图的链接。 • 另一种让学生参与并有兴趣研究地球结构和地震活动的方法是通过具体的案例研究和研究(例如,2002 年的德纳利断层地震)。展示实际的地震波传播过程可以帮助学生看到真实地震的实际结果。这对所有学生都有帮助,但对视觉性更强或难以从文本中形成概念的学生尤其有帮助。
大规模并行 3-D 单程地震偏移 SLCS 购买了两台 Thinking Machines Corporation 连接机(最初是 CM-200,后来是 CM-5)。这些机器最初旨在用于 AI 应用,源自 20 世纪 80 年代初 Danny Hillis 在麻省理工学院 (MIT) AI 实验室的博士研究。购买它们是为了支持 SLCS 的 3-D 建模(参见“基于物理的计算机图形学”部分)。然而,最重要的成果之一是开创性的地震处理方法。大规模并行性使 3-D 单程深度偏移变得实用 [33]。在此之前,对于典型的地震勘测(磁带上输入的 1TB 数据),典型的 3D 处理序列可能需要在大型超级计算机上花费大约 30 周的时间,而仅偏移处理就需要 4 到 5 周的处理时间。新系统实现了近 10 倍的效率提升。现代地震处理集群并非完全不同:它们利用与 CM-5 数字信号处理器相当的 GPU,但性能和内存要高出几个数量级,并且集群机器之间具有高带宽、低延迟的行业标准互连。
简介:地震会对基础设施造成大规模破坏并造成人员伤亡。从 1990 年到 2010 年,印度经历了 9 次以上大地震,造成约 30,000 人死亡。虽然某些地区(例如 IS 1893(第 1 部分)-2016 规定的地震区 V 中的地区)更容易发生地震,但印度没有一个地区可以完全免受这种威胁。每天都会发生许多小地震。过去地震中建筑物的糟糕表现暴露了它们的脆弱性,促使工程师和建筑师优先设计更具抗震效率的结构。印度约 60% 的陆地面临中度至极重度地震的风险。人口稀少地区的大地震造成的破坏可能小于人口稠密地区的中度地震。大地震后的实地调查显示,大多数人员伤亡是由于建筑物倒塌造成的。缺乏抗震知识及其在建筑设计和施工中的应用导致结构失效。许多农村和城市建筑都是低层、非工程结构,最容易受到损坏。地震期间,地震波向四面八方辐射,水平振动尤其容易导致结构损坏。这些波会导致建筑物地基移动,从而在结构构件中产生惯性力。建筑物在地震中的抗震性能受其形状、大小和几何形状以及载荷路径特性的影响。抗震设计抗震设计理念旨在保护结构和人的生命。它要求承重构件在轻微、频繁的震动中保持完好无损,在中等、偶尔的震动中承受可修复的损坏,并在罕见的强烈震动中承受严重损坏而不倒塌。本研究考察了这些常见建筑类型的施工实践。在必要时,参考规范规定,为当地施工实践提供了建议。此外,本研究还讨论了抗震技术的潜在未来趋势。研究目标:本研究旨在调查地震对传统建筑和抗震建筑的影响。此外,该项目还旨在研究增强建筑结构抗震能力的先进材料及其开发方法。更具体的目标包括:
流星体的影响会产生地震波,从而使火星比以前想象的更强烈,更深刻地摇动。这是通过伯尔尼大学领导的国际研究团队进行的人工智能调查所表明的。在NASA的MARS Lander Insight记录的许多Meteoroid对火星表面的影响与火星表面的影响之间存在相似之处。这些发现为红色星球的影响率和地震动力学开辟了新的观点。
作为 IDC 执行的自动数据处理的一部分,对来自地震站的信号进行分类,以根据自动测量的特征(幅度、频率内容、粒子运动参数等)确定其地震相位。在处理来自辅助地震站的数据时,结合使用人工神经网络(ANN)和贝叶斯分类器,自动将 9 种可能的相位类型之一分配给信号。ANN 和贝叶斯分类器在由人工分析人员审查和纠正的自动信号上进行训练。该组件已投入运营多年。正在进行的活动一方面与对每个站点的现有 ANN 进行重新训练(调整)有关,另一方面与通过将当前的 ANN 和贝叶斯分类器组合替换为一个(更深的)ANN 来提高自动分类器的性能有关。我们还在研究在分类过程中使用其他信息(例如原始波形数据)是否可以进一步提高性能。