作者:Matthew Speicher 博士和 John Harris 博士实施基于性能的抗震设计 (PBSD) 程序来评估现有建筑引起了人们对使用类似方法设计新建筑的兴趣。使用这些程序的优势在于,设计师可以超越传统设计的更多规定性要求,并在预期性能和设计过程之间建立更直接的联系(即,性能目标在前期明确定义)。这使得工程师可以轻松地将预期性能传达给客户,并在需要时实现超越规范性能的设计目标。然而,大约十年前,随着 PBSD 在实践中越来越受欢迎,关于新建筑抗震设计标准与现有建筑抗震评估之间关系的公开信息非常有限。因此,一些工程师担心现有建筑标准过于保守,在利用现有建筑标准进行新建筑设计时,可能会导致对现有建筑进行不必要的昂贵改造或对新建筑进行不必要的昂贵设计。在《支持全面实施基于性能的抗震设计所需的研究》(NIST 2009)和《ASCE 41 或建筑抗震修复展望》(SEAONC 2010)中指出了了解这种关系的必要性。因此,美国国家标准与技术研究所 (NIST) 开始了一项研究计划,以帮助弥合理解上的差距并解决采用 PBSD 评估现有建筑和设计新建筑所面临的挑战。本系列的第 1 部分(结构,2021 年 10 月)讨论了基于性能的设计程序的相关历史,并对基于性能的方法和传统设计方法进行了比较。NIST 的四部分研究《新钢结构建筑第一代基于性能的抗震设计方法评估》调查了四种钢结构抗震系统 (SFRS)(Harris 2015a、2015b、2015c 和 Speicher,2020 年)。使用美国土木工程师学会的 ASCE 7:建筑物和其他结构的最低设计荷载设计了几座原型建筑,然后使用 ASCE 41:现有建筑的抗震评估和改造中的规定进行评估。结果表明,在许多情况下,按照 ASCE 7 要求设计的建筑没有通过 ASCE 41 中的验收标准,因此需要进一步完善 ASCE 41 中的 PBSD 规定,以符合更符合常识的结果。
上述设备在正确安装、按预期使用的情况下,已获准用于抗震应用,并包含引用此合规证书的抗震认证标签。根据表格值的限制,地下、地面和屋顶水平安装、重要设施中的安装、生命安全应用和/或包含危险内容的设备均允许并包含在此认证中,设备重要性系数指定为 I=1.5。在 ISO 认可的产品认证机构 VMC 集团的见证下,该设备已在国家认可的 CERL(美国陆军工程兵团)实验室和加州大学伯克利分校太平洋地震工程研究中心通过成功的抗震振动台测试。
监测,验证和会计(MVA)对于确保安全和长期的地质碳存储至关重要。地震监测是一种关键的MVA技术,它利用地震数据来推断Co 2饱和岩石的弹性特性。在地下存储储存库和潜在泄漏区域中CO 2的可靠会计需要准确的岩石物理模型。然而,基于常规生物 - 加斯曼方程的广泛使用的CO 2岩石物理模型可以大大低估CO 2饱和度对地震波的影响,从而导致不准确的会计。我们通过考虑多孔岩石中地震速度的应力依赖性和岩石框架上的CO 2的压力依赖性的两种影响,从而开发出准确的CO 2岩石物理模型。我们使用Kimberlina-1.2模型(以前提出的加利福尼亚州的地质碳存储位点)验证了我们的CO 2岩石物理模型,并使用我们的新岩石物理方法创建了延时弹性属性模型。我们将结果与使用常规生物加斯曼方程获得的结果进行了比较。我们的创新方法比Biot-Gassmann结果产生弹性特性的变化更大。使用我们的CO 2岩石物理模型可以复制实验室观察到的剪切波降低速度。我们的岩石物理模型增强了延时弹性波建模的准确性,并使用地震监测实现了可靠的CO 2会计。
• ABMI 的 HFI2019 中当前可用的地震线并非陆地表面现有地震线的完整表示。由于 SPOT 图像上的可检测性低,并且特征数量超出了省级 HF 数据集的当前平视数字化能力,因此该数据集中可能缺少低影响地震线。边界内的 ABMI 采样规模 HF 数据集(时间人类足迹)应该用于更详细地表示采样站点内的此子层(尺寸:3 公里 x 7 公里;分布在 20 公里 x 20 公里的间隔网格中)。
在准备CTBT的生效后,《全面的核测试条约组织》(CTBTO)正在积极发展OSI功能。被动地震学监测的最新进展包括升级遥测系统,用于数据处理软件的数据传输和开发,以适应地形具有挑战性的环境。为了评估其他地球物理技术的当前OSI地球物理成像能力,以及以综合方式进行深层的现场表征应用,在2022年9月在奥地利YBBStaler Alps进行了广泛的现场测试。共振地震学和主动地震调查,磁性和重力场映射以及电导率测量是在40-350 m深度的三个轮廓上进行的,模仿地下核爆炸产生的地下腔。这是新获得的主动地震数据记录系统的第一个现场测试,其目的是开发用于主动地震调查的OSI方法。在所有地球物理技术中,主动的地震调查具有为更深的位点表征提供最高分辨率的潜力。
该评估发现Norsar在地震学,地震监测和相关研究中表现出色。他们的尖端研究和先进的技术为地震活动提供了宝贵的见解,并支持他们对社会的积极影响。通过广泛的地震电台网络和新安装和维护的光纤电缆网络,诺萨尔的复杂监测系统可以检测和分析地震,从而有助于全球监测工作以及帮助灾难管理和预警系统。Norsar的技术能力,包括创新技术和数据分析方法,导致了地震研究的重大进步。通过与国家和国际组织,学术机构和研究机构的合作,Norsar促进了知识交流,联合项目和地震学的国际合作。他们对公共宣传和教育的奉献精神有助于提高人们对地震的认识,并为社区准备地震事件,从而有助于韧性社会。政府,政策制定者和组织经常寻求诺萨尔的专业知识,以进行地震风险评估,缓解危害和灾难响应计划,从其科学建议和基于证据的建议中受益于制定强大的政策。
探测引力波的挑战在于它们在时空中造成的极小扭曲,而这些扭曲很容易被环境噪声掩盖。克服这些挑战需要先进的技术来降低地震活动、热波动和其他来源的噪声(Abbott 等人,2016 年)。一些关键策略包括:首先,地震隔离:LIGO、Virgo 和 KAGRA 中的悬挂镜被设计为与地面振动隔离。多层悬挂系统(包括主动阻尼机制)有助于保护镜子免受地震干扰(Thorne,2017 年);其次,真空系统:这些探测器中的激光束穿过长真空管,以防止空气分子散射,从而将噪声引入测量中。
• 菲律宾公共工程和公路部 - 桥梁抗震设计规范,第 1 版 2013 年(DPWH-BSDS)参考文献 1;• 菲律宾公共工程和公路部 - 设计指南、标准和标准;第 1 至 6 卷,2015 年(DPWH-DGCS)参考文献 2;• 美国州公路和运输官员协会指南规范,荷载抗力系数设计桥梁设计第 7 版(2012 年),包括截至 2016 年的修订(AASHTO-LRFD)参考文献 3;以及 • 美国州公路和运输官员协会指南规范,荷载抗力系数设计抗震桥梁设计第 2 版(2011 年),包括截至 2016 年的修订(AASHTO-LRFD-S)参考文献 4。• 日本铁路结构设计标准和注释(抗震设计)(2012 年)(JDSRS)参考文献 5。 • 日本道路协会标准 (JRA) (2012) Ref.6
Cive 3140。结构钢设计I.(3个学分)先决条件:Cive 3130,土木工程计划的入学和大学先进的地位,开发了结构钢设计中的基于代码的概念。专注于螺栓和焊接连接,复合梁以及地震框架和细节的设计。覆盖螺栓,焊缝和连接的材料强度,包括张力,剪切和力矩连接。深入研究了固定和力矩框架,成员选择以及地震连接设计的地震设计,并详细介绍了将行业软件用于成员设计,以使学生熟悉实践状态。使学生在专业设计办公室设计钢结构中有效地运作。$ 45的实验室访问费。
抽象的地热能是一种绿色的力量来源,可以在气候意识的能量组合中发挥重要作用。增强的地热系统(EGS)有可能扩大对热资源的利用。在液压压裂期间,在高压下注入的流体会导致岩石质量失败,刺激裂缝,从而改善流体连接性。然而,孔隙流体压力的增加也可以重新激活现有的断层系统,从而可能诱发大小的地震。诱发的地震是EGS操作的重要关注点。 在某些情况下,地面摇动滋扰,建造损害或伤害刺激了项目的早期终止(例如,巴塞尔,波哈)。 另一方面,EGS在Soultz -Sous -forêts(法国),赫尔辛基(芬兰),蓝山(美国内华达州)和犹他州Forge(美国)进行了充分管理的诱发地震风险。 EGS操作的成功取决于经济的储层增强功能,同时保持可接受的地震风险水平。 这需要现状的地震风险管理。 本文回顾了地震学,地震工程,风险管理和沟通的领域。 然后,我们综合了“良好实践”建议,以评估,缓解和传达诱发地震的风险。 我们主张一种模块化方法。 我们的建议遵守监管最佳实践,以确保其一般适用性。 我们的指南为有效的地震风险管理和未来的研究方向提供了模板。诱发的地震是EGS操作的重要关注点。在某些情况下,地面摇动滋扰,建造损害或伤害刺激了项目的早期终止(例如,巴塞尔,波哈)。另一方面,EGS在Soultz -Sous -forêts(法国),赫尔辛基(芬兰),蓝山(美国内华达州)和犹他州Forge(美国)进行了充分管理的诱发地震风险。EGS操作的成功取决于经济的储层增强功能,同时保持可接受的地震风险水平。这需要现状的地震风险管理。本文回顾了地震学,地震工程,风险管理和沟通的领域。然后,我们综合了“良好实践”建议,以评估,缓解和传达诱发地震的风险。我们主张一种模块化方法。我们的建议遵守监管最佳实践,以确保其一般适用性。我们的指南为有效的地震风险管理和未来的研究方向提供了模板。为关键技术方面提供了建议,包括(a)地震风险管理框架,(b)地震风险预筛查,(c)全面的地震危害和风险评估,(d)交通灯协议设计,(e)地震监控实施以及(f)逐步通信计划。