DOI: https://dx.doi.org/10.30919/es1158 Simulation Calculation of Selective Reflective Films based on Metamaterials and Prediction of Color in Light Filter with Machine Learning Pawinee Xiangtian Gao, 1, 2 Ming Yang, 1, 2,* Aricson Pereira, 3 Sijie Guo 4 and Hang Zhang 1, 2,* Abstract In this study, we已经开发了一种利用超材料的新型三层圆柱周期性结构,将周期性的圆柱体布置与金属 - 绝缘子 - 金属(MIM)三层构型相结合。有限差时间域方法用于计算结构的反射曲线,然后计算D65光源下结构的颜色坐标。我们获得了结构和结构大小参数变化所呈现的颜色之间的关系。然后,随机森林算法用于机器学习,并获得了更准确的学习模型。确定系数r 2高于0.98。此结果可确保随机森林算法可以用于上层建筑的计算中。本文介绍了具有可调色属性和机器学习框架的新型轻滤波器设计,以基于结构参数进行准确的颜色预测。
在稀疏奖励任务中学习有效的策略是加强学习的基本挑战之一。这在多代理环境中变得极为困难,因为对多种代理的同意学习引起了非平稳性问题,并大幅增加了关节状态空间。现有作品试图通过经验共享来实现多代理的合作。但是,从大量共享经验中学习是不具备的,因为在稀疏的奖励任务中只有少数高价值状态,这可能会导致大型多区域系统中的维度诅咒。本文着重于稀疏的多项式合作任务,并提出了一种有效的体验共享方法,即MAST的选修课(MASL),以通过重新获得其他代理商的有价值的经验来促进样本良好的培训。MASL采用了一种基于倒退的选择方法来识别团队奖励的高价值痕迹,基于这些召回痕迹在代理之间生成并共享某些召回痕迹,以激发有效的外观。此外,MASL有选择地考虑来自其他代理商的信息,以应对非平稳性问题,同时为大型代理提供有效的培训。实验结果表明,与最先进的合作任务中的最先进的MARL Al-Al-gorithms相比,MASL显着提高了样本的效率。
网络结构在社会困境内促进群体合作中的重要性已得到广泛认可。先前的研究将这种促进性归因于空间相互作用驱动的各种策略。尽管已经采用了强化学习来研究动态互动对合作演变的影响,但仍然缺乏对代理如何发展邻居选择行为以及在显式相互作用结构中形成战略分类的影响。为了解决这个问题,我们的研究介绍了一个基于空间囚犯困境游戏中多代理增强学习的计算框架。此框架使代理商可以根据他们的长期经验选择困境策略和互动邻居,与依赖于预设社会规范或外部激励措施的现有研究不同。通过使用两个不同的Q-networks对每个代理进行建模,我们可以纠缠着共同操作和相互作用之间的协同进化动力学。结果表明,长期经验使代理人能够发展出识别非合作邻居并表现出与合作社相互作用的偏爱的能力。这种紧急的自组织行为导致具有相似策略的代理的聚类,从而增加网络互惠并增强群体合作。
Janus 激酶 (JAK) 超家族成员包括酪氨酸激酶 2 (TYK2) 和 JAK1、JAK2 和 JAK3,它们介导参与银屑病发病机制的细胞因子(例如白细胞介素 [IL]-23)的信号传导。IL-23 与其受体结合可激活 TYK2 和 JAK2,从而触发信号转导和转录激活因子 (STAT) 易位到细胞核以调节靶基因转录,包括促炎介质基因,例如 IL-17。从生理学上讲,TYK2 仅介导免疫功能,而 JAK1、2、3 介导广泛的全身和免疫功能。正在评估单个 JAK 家族成员的抑制在包括银屑病在内的多种皮肤病适应症中的应用。因此,选择性 TYK2 抑制预计对银屑病患者几乎没有不良反应。因基因突变导致 TYK2 功能丧失的人可以避免患上银屑病,并且不会增加感染或恶性肿瘤的风险。相比之下,使用 JAK1,2,3 抑制剂治疗会产生各种全身影响。我们回顾了选择性 TYK2 抑制剂 deucravacitinib 的独特变构作用机制,该抑制剂与 TYK2 调节(假激酶)结构域结合,以及 JAK1,2,3 抑制剂的作用机制,该抑制剂与 JAK1,2,3 激酶结构域中的腺苷 5'-三磷酸结合活性(催化)位点结合。Deucravacitinib 已获准在美国和其他几个国家用于治疗成人中度至重度斑块状银屑病,是一种具有良好安全性的新型靶向全身治疗方法。
Moyu Chen 1 † , Yongqin Xie 1 † , Bin Cheng 2* , Zaizheng Yang 1 , Xin-Zhi Li 3 , Fanqiang Chen 1 ,
阿尔茨海默病 (AD) 是一种严重的神经退行性疾病,影响着全球数百万人。淀粉样β蛋白 (A β ) 的积累是该疾病的早期关键标志,因此是了解病理生理学和治疗的重要目标。最近的临床试验表明,使用抗 A β 抗体治疗的 AD 患者的认知和功能衰退减缓,这确实强化了 A β 在 AD 病理生理学中的重要作用 [1,2]。神经元对 A β 积累的最早反应之一是兴奋性异常增加 [3,4]。然而,神经元并不是唯一对 A β 有反应的细胞。最近,转录组研究表明,在人类 AD 组织 [5,6] 和小鼠 AD 模型 [7,8] 中,不仅小胶质细胞和星形胶质细胞发生了变化,而且少突胶质细胞(中枢神经系统的髓鞘细胞)也发生了变化。此外,与 AD 相关的遗传风险
附录C:选择性5-羟色胺再摄取抑制剂(SSRI)监测表* SSRI药物监测:使用0到3级的症状和副作用对症状和副作用进行评分。0 =不存在1 =稍微2 =中等量3 =严重和/或频繁的注意:在治疗前进行比较。提供的额外空间可添加单个目标症状或副作用。Patient: _______________________ Medication:______________________ Start Date:______________ Date Dose Depression Baseline 2 weeks 4 weeks 6 weeks 8 weeks __ weeks __ weeks __weeks Depressed mood Irritable mood Sleep problems Fatigue Poor concentration Appetite problems Agitation Suicide ideas Hopelessness Worthlessness Social withdrawal Slowed down Anxiety Baseline 2 weeks 4 weeks 6 weeks 8 weeks __ weeks __ weeks __weeks Insomnia Uncontrollable worry Panic attacks Avoidance Stomach aches Fatigue Poor concentration Compulsive habits Obsessive thoughts Social anxiety Side Effects Baseline 1 Wk 2 Weeks 4 Weeks 6 Weeks 8 Weeks __Weeks __Weeks __Weeks Nausea Stomach ache Headache Shakiness Agitation Rash Tired/Sleepy Inner restlessness Muscle spasms Twitching Heart racing Sexual changes Apathy/unmotivated Sweating Dizzy Vivid dreams Urinary problem腹泻食欲减少食欲增加体重减轻体重增加
生物纳米孔对控制生物分子跨细胞脂质膜的进出口至关重要。它们在生物物理学和生物技术领域得到广泛应用,其通常较窄且固定的直径能够选择性地运输离子和小分子,以及用于测序应用的 DNA 和肽。然而,由于其通道尺寸较小,因此无法通过较大的大分子,例如治疗剂。在这里,利用 DNA 折纸纳米技术、机器启发设计和合成生物学的独特组合特性,提出一种结构可重构的 DNA 折纸 MechanoPore (MP),其管腔可通过分子触发器调整大小。通过 3D-DNA-PAINT 超分辨率成像和染料流入分析证实了 MP 在 3 个稳定状态之间的可控切换,这是通过反相乳液 cDICE 技术在脂质体膜中重建大型 MP 后实现的。跨膜运输的共聚焦成像显示了具有可调阈值的尺寸选择性行为。重要的是,构象变化是完全可逆的,证明了强大的机械切换可以克服来自周围脂质分子的压力。这些 MP 推动了纳米孔技术的发展,提供了可以根据需要进行调整的功能性纳米结构,从而影响了药物输送、生物分子分选和传感以及自下而上的合成生物学等多种领域。
摘要:一种主要的瓶颈降低了各种药物的治疗功效,是只有一小部分给药剂量到达作用部位。增加目标组织中药物量的一种有希望的方法是通过用细胞表面受体配体修饰的纳米颗粒(NP)递送,以选择性地鉴定靶细胞。但是,由于受体结合可以无意间触发细胞内信号传导级联,因此我们的目标是开发一种独立于受体的NP摄取方式。细胞穿透肽(CPP)是一种有吸引力的工具,因为它们允许有效的细胞膜交叉。到目前为止,由于其促进能力是非特异性的,因此它们的适用性受到严重限制。因此,我们旨在将有条件的CPP介导的NP内在化仅在目标细胞中。我们合成了不同的CPP候选物,并研究了它们对核心 - 壳 - 壳纳米颗粒系统中的影响,ζ电位和吸收特征,该系统由聚(乳酸糖 - 糖果)(PLGA)(PLGA)(PLGA)和聚(乳酸)和甲基乙二醇(乙烯乙二醇)(PLA)(PLA 10 K PEG)(PLA 10K)组成的壳纳米颗粒系统(PLA)(PLA)(PLA 10K)钉部分。我们将TAT47-57(TAT)确定为最有前途的候选人,随后将TAT修饰的PLA 10K 10K PEG 2K 2K聚合物与更长的PLA 10K PEG 5K 5K聚合物链结合在一起,用有效的血管紧张素转换酶2(ACE2)Infimitor-2(ACE2)Infimitor Mln-47660进行了修饰。MLN-4760启用选择性目标细胞识别时,额外的PEG长度在第一个非特异性细胞接触期间隐藏了CPP。仅在MLN-4760与ACE2的先前选择性结合后,已建立的空间接近度暴露了CPP,从而触发了细胞的摄取。与未修饰的颗粒相比,我们发现ACE2阳性细胞的摄取量有18倍。总而言之,我们的工作为有条件的纳米颗粒摄取为有条件的,高度选择性受体依赖性的纳米颗粒摄取铺平了道路,这在避免副作用方面是有益的。关键字:纳米颗粒靶向,聚合物纳米颗粒,多精氨酸,TAT,纳米粒子表面电荷,聚阳离子,电荷介导的摄取,顺序摄取
睡眠障碍会影响世界各地数百万的人,并与精神病患者的合并症很高。虽然目前的催眠药主要增加了非比型眼运动睡眠(NREM),但缺乏有选择地起作用快速眼动睡眠(REMS)的药物。这项在雄性大鼠中进行的多个学术研究表明,第一类选择性褪黑激素MT 1受体部分激动剂UCM871增加了REM的持续时间而不会影响NREM的持续时间。UCM871的REMS促进作用是通过以剂量的方式抑制ceruleus(LC)去甲肾上腺素(NE)神经元的响应方式,表达MT 1受体。通过MT 1药理学拮抗作用和腺相关病毒(AAV)载体消除了REMS持续时间的增加和UCM871对LC-NE神经元活性的抑制,从而选择性地击倒了LC-NEMERONS中的MT 1受体。总而言之,MT 1受体激动剂抑制了LC-NE神经元和触发REM,因此代表了与REMS障碍相关的REMS疾病和/或精神疾病的新机制和靶标。