背景:通过指数富集(SELEX)对配体的系统演变是一种发现具有高亲和力和特异性的新型配体的强大方法。但是,实验过程是耗时的,资源密集的,并且涉及许多可以显着影响结果的参数。本论文旨在使用扩散模型开发一个内部的SELEX模拟器,这些模型是一类生成模型,通过一系列通过一系列降噪步骤迭代精炼信号来学会降解数据。通过利用扩散模型的功能,我们可以简化配体发现并优化实验条件。
6- 18GHz 频率覆盖 4GHz 瞬时带宽 16 个天线元件(线性阵列) 角度覆盖/TTD 阵列:± 45o 方位角,± 45o 仰角 相邻波束交叉:低于波束峰值 3 - 8 dB 下一个相邻波束交叉 = 低于波束峰值 20 dB 且大于最高旁瓣
抽象的角膜是注射药物的主要障碍,这导致局部眼部治疗的生物幻想低和效力不佳。在这项工作中,我们首先使用猪角膜上的纸巾选择角膜结合适体。顶部两个丰富的适体(Cornea-S1和Cornea-S2)可能与猪角膜结合,其K D值与人角膜上皮细胞(HCEC)分别为361和174 n。适体官能化的脂质体载有环孢菌素A(CSA)作为干眼疾病的治疗方法。由于多价结合,角膜-S1或角膜-S2官能化的脂质体分别降低至1.2和15.1 n。在HCEC中,角膜-S1或Cornea-S2在15分钟内增强了脂质体的摄取,并将保留率延长至24小时。适体CSA脂质体获得了相似的抗炎和紧密连接调节效应,CSA的CSA比免费药物少十倍。在兔干眼病模型中,与商业CSA眼滴相比,Cornea-S1 CSA脂质体在维持角膜完整性和撕裂破裂时间方面表现出等效性,同时使用较低的CSA剂量。从角膜 - 塞莱克斯获得的适体可以用作眼药递送的一般配体,这表明有希望治疗各种眼部疾病甚至其他疾病的途径。
分析使我们能够选择一个病毒寡肽序列,其侧面的可变区域(VR)作为合适的目标(图。1a)用于使用SELEX隔离和识别适体(如图1b)。在筛选期间,
适体是单链寡核苷酸,它们结合具有高亲和力和特异性的分子靶标。但是,他们的发现和进化仍被限制在常规的SELEX方法上。在这里,我们提出了一种适体结合语言(可易于使用的)模型,该模型通过将预处理的蛋白质和核酸序列编码与跨注意结构相结合,以捕获适体 - 蛋白结合的决定因素,从而实现跨不同蛋白质靶标的结合相互作用的可靠预测。该模型采用具有多头跨意义机制的基于变压器的结构,优化了序列特定特征和位置嵌入,以学习适体及其蛋白质靶标之间的复杂结合模式,同时维持跨不同适应性库的序列长度多样性。我们跨不同基准测试的广泛评估表明,在概括实验结合曲线方面的现有方法相对于现有方法的优势。可易于观察的蛋白质和产生的适体表现出强烈/有利的概括性。在现实世界中,可易于识别的是几种经过实验验证的CD117 ssDNA Apatamers先前被传统SELEX遗漏的,并产生了一种新型的SSDNA Apatamer,该Aptna Aptamer与APP62与人类CD4共享具有可比的结合曲线。这些结果展示了可捕获捕获适体蛋白结合的分子相互作用的能力。
蛋白核酸(NA)相互作用是控制基因调节的关键。在理解这些相互作用的目标上是一个强大的动力,其目的是设计这些相互作用以解决生物学问题。量化蛋白质核酸的当前方法主要是实验性的,需要大量时间和金钱。为了减轻这种情况,最近已应用深度学习方法来预测蛋白质-DNA接触。尽管很有希望,但这些方法在计算上是昂贵的,并且在准确性上面临挑战。为了应对这些挑战,我们构成了SEQ2-Contact,这是一种预测单核苷酸(DNA)和单个氨基酸(蛋白质)水平的蛋白质NA结合的新方法。seq2Contact建立在蛋白质和DNA粉底模型上,以获得核苷酸和氨基酸特异性嵌入,然后引入一个交叉意见模块以获得结合接触图。我们采用一种基于序列相似的聚类方法来拆分火车测试数据,并从经验上说明Seq2-Contact可以实现状态的性能,以使现有基本线对蛋白质-DNA结合预测的预测近20%(F1得分)。我们的方法在计算上更有效,记忆成本少80%,推理时间少90%以上。代码可在https://github.com/dhruvarajwade/seq2contact上找到。
摘要:ENROROXATIN(ENR)被广泛用作水生动物中疾病控制的合成氟喹诺酮抗生素。ENR适体,并开发了石墨烯氧化物荧光传感器来检测水生产品中的ENR残基。首先,ENR通过酰化反应将ENR与氨基磁珠共轭,然后通过使用SELEX筛选方法逐步筛选了显示高亲和力的适体序列。最后,在10轮SELEX筛选后,获得了6个具有高亲和力的候选适体。在其中,基于其二级结构特征,高亲和力(k d = 35.08 nm)和ENR的高特异性选择。此外,使用氧化石墨烯并重新安装6。结果表明,传感器的线性范围可以达到600 nm(R 2 = 0.986),而其最佳线性范围为1-400 nm(R 2 = 0.991),最低检测极限为14.72 nm。制备的传感器成功用于检测实际样品中的ENR,恢复范围为83.676–114.992%,大多数样品的相对标准偏差<10%。
2016 年 1 月 1 日:通过合并业务,OTO Melara 和 WASS 并入 Finmeccanica,并吸收 AgustaWestland、Alenia Aermacchi 和 Selex ES 开展的业务,One Company 正式成立。该工业实体保留了 DRS Technologies、MBDA、Telespazio、Thales Alenia Space 和 ATR 的母公司和企业中心职能。
主动系统采用近红外脉冲激光和快速门控探测器,目前已用于大多数远程成像应用。这一概念通常称为突发照明激光雷达或 BIL。SELEX 固态探测器基于 HgCdTe 雪崩光电二极管阵列和定制设计的 CMOS 多路复用器,用于执行快速门控和光子信号捕获。这些混合阵列产生的灵敏度低至 10 个光子,这主要是由于 HgCdTe 二极管中非常高且几乎无噪声的雪崩增益。激光门控成像的优势之一是将物体从背景中分割出来,从而提供信噪比优势。然而,在复杂的场景中,在伪装和隐蔽的情况下,系统的主要增强功能是能够生成 3D 图像。在这里,探测器逐个像素地感知范围以及激光脉冲强度,为每个激光脉冲提供深度背景。 3D 数据能够更有效地从背景杂波中提取物体。距离信息受过度对比度、相干性和闪烁效应的影响较小,因此图像比传统的 2D BIL 图像更清晰。在机载应用中,拥有 3D 信息尤其有用,可以在动态环境中提供距离选通的灵活反馈控制。本报告介绍了一些可用于生成 3D 信息的探测器技术以及导致选择 SELEX 探测器的论据
如需更多信息,请发送电子邮件至 infomarketing@selex-es.com Selex ES ltd - 芬梅卡尼卡公司 2 Crewe Road North, Edinburgh, EH5 2XS, 英国,电话:+44 (0) 131 343 8016,传真:+44 (0) 131 343 8616 本出版物仅用于提供概要信息,对于错误或遗漏,我们概不负责。未经书面授权,不得复制或使用其中任何部分。我们保留修改或修订本文件全部或部分内容的权利,恕不另行通知。