9规则19b-4(e)(1)规定,自我监管组织(“ SRO”)对新的衍生证券产品的上市和交易不被认为是拟议的规则更改,根据规则19B-4款(c)(1)的规则19B-4款,如果委员会根据委员会批准了第19条(b)的列表,该列表批准了第19条(b)的列表(b),该列表(b)的列表(b)the the traber ot the trul ot the Pruros of Act of Act octro octro oct oct octro oct octro oct octro oct octro oct octro octro octro octro octro的列表。新的衍生证券产品和SRO具有针对产品类的监视计划。根据本规则14.11(n)的规定,交易所提出了新规则14.11(n),以建立多级ETF的通用清单标准,允许根据豁免规则6C-11的豁免权,根据投资公司的豁免第6C-11条,该法案允许提供多个级别的ETF类别,以提供交换级别,以提供交换级别的款项,以提供交换级别的款项,并分享了一类,以供应额外的交易所。基金。因此,根据拟议规则14.11(n)列出的多级ETF将不需要根据规则19b-4进行单独的规则更改,然后才能在交易所列出和交易。
实现强大而实时的3D感知是自动驾驶汽车的基础。虽然大多数现有的3D感知方法优先考虑检测准确性,但十个忽略了关键方面,例如计算效率,板载芯片部署友好性,对传感器安装偏差的韧性以及对各种VE-HILE类型的适应性。为了应对这些挑战,我们提出了nvautonet:一种专业的鸟类视图(BEV)感知网络 - 针对自动化车辆的明确量身定制。nvautonet将同步的相机图像作为输入,并预测3D信号(例如障碍物,自由空间和停车位)。NVAUTONET架构(图像和Bev Back-bones)的核心依赖于有效的卷积网络,该网络使用Tensorrt优化了高性能。我们的图像到BEV转换采用简单的线性层和BEV查找表,从而确保了快速推理速度。Nvautonet在广泛的专有数据集中受过培训,在NVIDIA DRIVE ORIN SOC上以每秒53帧的速度运行,始终达到升高的感知精度。值得注意的是,Nvautonet表现出对不同汽车模型产生的偏差偏差的韧性。此外,Nvautonet在适应各种车辆类型方面表现出色,这是通过廉价模型的微调程序来促进的,可以加快兼容性调整。
18人民共和国和英国英国和北爱尔兰,“英国英国政府和北爱尔兰政府的联合宣言以及中华人民共和国政府在香港问题上”,UNTS 1399(1985)(1985):33-61:33-61,第3(2)条(2)和3(3)。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
摘要 本文介绍了业力机制,这是一种在无限时间内在竞争代理之间重复分配稀缺资源的新方法。示例包括决定在高峰需求期间为哪些叫车行程请求提供服务、在交叉路口或车道合并时授予通行权或将互联网内容纳入受监管的快速通道。我们研究了这些问题的简化但富有洞察力的表述,其中在每个时刻,从大量人群中随机匹配两个代理来竞争资源。业力机制的直观解释是“如果我现在屈服,我将在未来得到回报。”代理在类似拍卖的环境中竞争,他们竞标业力单位,业力直接在他们之间流通并在系统中自成一体。我们证明,这使得一个自利的代理社会能够实现高水平的效率,而无需诉诸(可能有问题的)资源货币定价。我们将业力机制建模为动态人口博弈,并保证存在一个平稳纳什均衡。然后,我们用数字方式分析了稳定纳什均衡下的表现。对于同质代理的情况,我们比较了不同的机制设计选择,表明当代理具有未来意识时,可以实现高效且事后公平的分配。最后,我们测试了针对代理异质性的稳健性,并通过业力重新分配提出了一些观察到的现象的补救措施。
时空卷积通常无法学习视频中的运动动态,因此需要一种有效的运动表示来理解自然界中的视频。在本文中,我们提出了一种基于时空自相似性(STSS)的丰富而鲁棒的运动表示。给定一系列帧,STSS 将每个局部区域表示为与空间和时间中邻居的相似性。通过将外观特征转换为关系值,它使学习者能够更好地识别空间和时间中的结构模式。我们利用整个 STSS,让我们的模型学习从中提取有效的运动表示。我们所提出的神经块称为 SELFY,可以轻松插入神经架构中并进行端到端训练,无需额外监督。通过在空间和时间上具有足够的邻域体积,它可以有效捕捉视频中的长期交互和快速运动,从而实现鲁棒的动作识别。我们的实验分析表明,该方法优于以前的运动建模方法,并且与直接卷积的时空特征互补。在标准动作识别基准 Something-Something-V1 & V2、Diving-48 和 FineGym 上,该方法取得了最佳效果。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
在1970年代和80年代,摄影师Colleen Kenyon(美国,1951 - 2022年)和Kathleen Kenyon(American,1951-2023)是女性艺术家运动的一部分,他们以创新的方法对媒体进行了挑战。Colleen Kenyon是使用手着色来增强自己和姐姐在家庭环境中的肖像的先驱。凯瑟琳·肯尼恩(Kathleen Kenyon)擅长于大众媒体的女性的性别特定图像来创造具有讽刺意味的光焦点。从1981年开始,两个姐妹还担任伍德斯托克摄影中心的董事,他们继续倡导妇女在艺术和有色艺术家中的发展。我的姐姐,我的自我由艺术史学家汤姆·沃尔夫(Tom Wolf)和劳里·达尔伯格(Laurie Dahlberg)策划。由CPW组织,此回顾展具有肯尼亚斯最具标志性的作品,并在纽约金斯敦的CPW和纽约州伍德斯托克的Kleinert/James Center展出。展览材料是从CPW现在持有的作品的档案中得出的。
结果................................................................................................................................................ 20
