生成模型的快速进步导致了构成质量的令人印象深刻的飞跃,从而模糊了合成数据和真实数据之间的界限。网络规模的数据集现在易于通过合成数据不可避免地污染,直接影响了未来生成的模型的培训。已经在文献中出现了自我消耗生成模型的一些理论结果(又称迭代性重新训练),表明模型崩溃或稳定性可能取决于每个重新培训步骤中使用的生成数据的分数。但是,实际上,合成数据通常受到人类反馈的约束,并在在线使用和上载之前由用户策划。例如,流行的文本到图像生成模型的许多接口(例如稳定的扩散或Midjourney)为给定查询产生了几种图像的变化,最终可以由用户策划。在本文中,我们从理论上研究了数据策展对生成模型的迭代重新培训的影响,并表明它可以看作是一种隐式优先优化机制。但是,与标准偏好优化不同,生成模型无法访问成对比较所需的奖励功能或负面样本。此外,我们的研究不需要访问密度函数,而只需要访问样品。我们证明,如果数据是根据奖励模型策划的,则最大化迭代重新训练程序的预期奖励。我们在每个步骤使用真实数据的正分数时进一步提供了关于重新循环的稳定性的理论结果。最后,我们在合成数据集和CIFAR10上进行说明性实验,表明这种过程扩大了奖励模型的偏见。
在本文中,我们提出了一种创新的动态分类算法,旨在实现零遗漏的检测和最小误报的观察。使用监督模型将数据分配到N当量的训练子集和n个预测子集中,然后是n个单独的预测模型的独立预测。这使每个预测模型都可以在较小的数据范围内运行,从而提高了整体准确性。此外,该算法利用通过监督学习生成的数据来进一步完善预测结果,滤除未满足准确性要求的预测,而无需引入其他模型。实验性调查表明,当数据分配误差最小时,动态分类算法实现了出色的性能,而零遗漏的检测和最小的假阳性,则显着超过了现有的模型结合体。即使在分类错误较大的情况下,算法仍然可以与最新模型相提并论。这项研究的关键创新包括自我监督的分类学习,小范围子集预测的使用以及直接拒绝不合格的预测。虽然当前的算法在自动参数调整和分类模型效率方面仍然有改进的空间,但它在多个数据集中表现出出色的性能。未来的研究将着重于优化分类组件,以进一步增强算法的鲁棒性和适应性。
AI系统已经快速高级,多元化和扩散,但是我们对人们对他们的思想和道德的看法的了解仍然有限,尽管它对人们是否信任AIS以及他们如何分配AI引起的危害的责任。在一项预先进行的在线研究中,有975名参与者对26个AI和非AI实体进行了评价。总的来说,AI被认为具有低到中度的代理(例如,计划,行动),无生命的物体和蚂蚁之间以及低经验(例如,感应,感觉)。例如,Chatgpt的评分只能像岩石一样能够感到愉悦和痛苦。类似的道德能源,道德机构(做对与错)和道德专案(正确或错误地对待)较高,更多样化,尤其是道德机构:最高评级的AI,Tesla Full自动驾驶的汽车,被认为是道德上的危害,以危害作为黑猩猩。我们讨论了设计选择如何帮助管理感知,尤其是在高度的道德背景下。
尽管在野外有大量未标记的图像,但在原始图像数据上进行了可扩展的视觉预训练仍然是一个挑战。像素重建之类的通用配方努力为有效捕获详细的语义而努力,而在增强图像视图之间保持一致性的方法优化依赖于未经保育数据(如Web Crawls或视频框架)中不存在的归纳偏见。我们如何从广泛的未标记的IMEAL数据集中更有效地学习?我们研究注释引导程序,这种方法学会了将图像关联到示意注释,并使用未标记的数据来引导模型的理解,通过对图像附近农作物的语义进行预测。关键的优势在于它具有规格(哪些语义概念很有趣?)从预测中(这些概念发生在自然图像数据中?)。我们表明,注释引导使我们能够通过策划的未标记数据集或弱监督的数据集指导预训练,同时通过自举损失从所有未经切割的图像数据中学习。我们的实验证明了对野外未标记图像的预先培训的改进,包括视频数据,例如epickitchens,Coco等场景数据以及CC12M(例如CC12M)。
Hannah D. Franklin 1, Lucy L. Russell 1, Georgia Peakman 1, Caroline V. Greaves 1, Martina Bocchetta 1, Jennifer Nicholas 2, Jackie Poos 3, Rhian S. Convery 1, David M. Cash 1.4, John Van Swieten 3, Lize Jiskoot 1.3, Ferin Moreno 5.6, Raquel Sanchez-Valle 7, Barbara Borroni 8,罗伯特·拉福斯(Robert Laforce Jr)9,马里奥·马塞利斯(Mario Masellis)10,玛丽亚·卡梅拉·塔塔格利亚(Maria Carmela Tartaglia)11,卡罗琳·格拉夫(Caroline Graff)12.13,daniela galimberti 14.15,詹姆斯·B·罗(James B.塔利亚维尼(Tagliavini)24,伊莎贝尔·桑塔纳(Isabel Santana)25.26,西蒙·杜切尔(Simon Ducharmers)27.28,克里斯·巴特勒(Chris Butler)29,亚历克斯·格哈德(Alex Gerhard)30.31,约翰内斯·莱文(Johannes Levin)32,33.34,阿德里安·丹尼克(Adrian Danek)32,马克斯·奥托(Markus otto) Jonathan D. Rohrer 1*和代表遗传FTD倡议,Genfi
尽管结核病的全球公共卫生负担持续,但仍缺乏安全有效的保护策略。Bacillus Calmette-guérin(BCG)疫苗(以其开发商为名)连接灭活的分枝杆菌感染了牛,并且仍然是针对人类感染的唯一疫苗接种策略。注射到皮肤中,仅提供针对幼儿结核病的部分保护,而成人没有保护。
图2。第1分段期间女性和男性的社会住房影响。A.单身女性在第一次EXT会话中具有更高数量的活动戳,与社会居住的女性相比((F(1,31)= 5.848; P = 0.0217))。b,与社会上的男性相比,单身男性在第一次EXT会话中具有更高数量的活动戳(((f(1,26)= 6.779; p = 0.0150))。*P <0.05。没有性别差异。
模型注册表是人工智能/机器学习(AI/ML)模型的生命周期中的重要组成部分,也是任何机器学习操作(MLOPS)平台或ML工作流的重要组成部分。模型注册表充当中央存储库,从成立到部署中持有与机器学习模型相关的元数据。此元数据范围从高级信息(例如部署环境和项目起源)到复杂的细节,例如培训超参数,性能指标和部署事件。模型注册表充当模型实验和服务之间的桥梁,为ML生命周期的利益相关者提供安全的协作元数据商店界面。
本节仅适用于提供两个完整的乙型肝炎免疫系列文档的学生,并且免疫后血清学尚未证明免疫力(即抗HBS仍小于10 IU/L)。对于此类别的学生,重要的是要确保(1)记录每个免疫系列,提供所有剂量,并尊重剂量之间的最小间距; (2)免疫后血清学是在该系列最终剂量后的28天到六个月之间进行的,被认为是可靠的。通常不需要进一步的暴露前肝炎免疫或血清学检查。我的签名下面指示以下内容: