新孢子虫主要感染牛,导致牛流产,估计每年对全球经济造成 10 亿美元的损失。然而,对其生物学的研究一直被忽视,因为既定范式认为它与其近亲、广泛研究的人类病原体弓形虫几乎完全相同。通过使用第三代测序技术重新审视基因组序列、组装和注释,我们在此表明,新孢子虫基因组最初是在与弓形虫同源的假设下错误组装的。我们表明这些物种之间发生了重大染色体重排。重要的是,我们表明最初命名为 Chr VIIb 和 VIII 的染色体确实融合了,从而将新孢子虫和弓形虫的核型都减少到 13 条染色体。我们重新注释了新孢子虫基因组,揭示了 500 多个新基因。我们对非光合质体和线粒体基因组进行了测序和注释,并表明尽管顶质体基因组几乎相同,但物种和菌株之间存在高水平的基因碎片化和重组。我们的结果纠正了目前在 N. caninum 和 T. gondii 基因组数据库中广泛分布的组装伪影,更重要的是,突出了线粒体是以前被忽视的变异源,并为改变同源性范式铺平了道路,鼓励重新思考基因组作为这些病原体比较独特生物学的基础。
全球建筑部门消耗了400亿吨的原材料,并负责大量CO 2排放。随着对环境影响的越来越认识,建筑部门正在寻求从线性经济“消除垃圾”的情况过渡到更大的循环经济原则。轻巧的外部填充墙壁建在主要结构框架的楼层之间,以提供建筑立面。这些组件的设计通常基于当前的线性经济模型。轻巧的外部填充墙在英国建造构建方面越来越普遍,但没有研究研究了考虑循环系统的潜在环境益处。这意味着缺乏对这些墙壁的碳足迹的研究,也缺乏重复使用它们的潜在环境益处。因此,本文评估了轻巧的外部填充墙壁中碳排放的重要性,并研究了轻巧的外部填充壁从建筑物框架中卸下并重复使用时是否有降低碳。本文首先研究了轻巧的外部填充墙的施工过程,并探索了降级和重复使用它们的机会。然后,使用生命周期评估框架分析了轻质外部填充墙的环境影响。灵敏度和不确定性分析。结果表明,(i)生命周期上轻巧的外部填充墙的体现碳代表整个建筑物的体现碳的大约22%,以及(ii)填充壁的灾难和重复使用可以减少建筑物的体现碳在典型的生活中与构造相比,而不是构造的场景,而不是构造的场景。
组件是大量的神经元,其同步射击被假设以代表记忆,概念,单词和其他认知类别。组件被认为可以在高级认知现象和低级神经活动之间提供桥梁。最近,已显示出一种称为组合微积分(AC)的组合系统,其曲目具有生物学上合理的组合操作,可以显示能够模拟任意空间结合的计算,还可以模拟复杂的认知现象,例如语言,推理和计划。但是,组件可以调解学习的机制尚不清楚。在这里我们提出了这样的机制,并严格证明,对于标记组件的分布定义的简单分类问题,可以可靠地形成代表每个类别的新组装,以响应类中的一些刺激。因此,该组件是对同一类的新刺激的响应可靠地召回的。此外,只要相应的类是相似的组件的群集,或者通常可以通过线性阈值函数与边缘分开,则这些类组件将可以区分区分。为了证明这些结果,我们利用具有动态边缘权重的随机图理论来估计激活的顶点的序列,从而在过去五年中对该领域的先前计算和定理产生了强烈的概括。被视为一种学习算法,这种机制完全在线,从很少的样本中概括,并且只需要温和的监督 - 在大脑模型中学习的所有关键属性。这些定理是通过实验来支持的,这些实验证明了组件的成功形成,这些组件代表了从此类分布中绘制的合成数据以及MNIST上的概念类别,这也可以通过一个AS-emerbly每位数字来分类。我们认为,从现实世界数据中提取属性(例如边缘或音素)的单独感觉预处理机制支持的这种学习机制可以是皮质中生物学学习的基础。关键字:关键字列表
根据全基因组关联研究 (GWAS),许多基因位点与 2 型糖尿病患病率相关。其中,位于人类染色体 9P21.3 区域的 INK4 基因位点编码一个细胞周期依赖性激酶抑制剂家族(称为 p16 INK4a、p15 INK4b 和 p14 ARF),可抑制细胞周期依赖性激酶 CDK4 和 6。此外,一个名为 ANRIL 的非编码 RNA 位于该基因位点内,与其他三个基因相比,其转录方向相反(图 1 A)(Cunnington 等人,2010 年;Popov 和 Gil,2010 年)。重要的是,INK4 基因座含有六个与 T2D 相关的单核苷酸多态性 (SNP),称为 rs2383208、rs10965250、rs10811661、rs10757283、rs1333051 和 rs7018475,位于 ANRIL 基因下游 8 kb 基因组区块 (INK4 T2D 风险区域) 中 (图 1 A) (Pasmant 等人,2010)。然而,这些 SNP 是否与 T2D 有因果关系以及它们如何调节 INK4 基因座尚不清楚。为了提供一种能够对 INK4 基因座的 T2D 关联 SNP 进行功能分析的工具,我们旨在生成缺少此 INK4 -T2D 风险区域的两个等位基因(纯合或双等位基因缺失)的 hiPSC 系。为此,我们使用我们最近建立的 hiPSC 系 (HMGUi001-A-1) (Wang et al., 2018) 通过 CRISPR/Cas9 基因组编辑系统进行基因靶向。由于靶向的是低保守性非编码 DNA,因此首先对 INK4 -T2D 风险区域上游(A 区域)和下游(B 区域)的 CRISPR 靶位点进行测序。然后,设计两组正向和反向引物(FA、RA;FB、RB)用于扩增 sgRNA 位点的边界区域(两个双链断裂)。接下来,设计具有高特异性得分的单向导RNA(sgRNA1和sgRNA2),并将其克隆到CRISPR表达载体中。通过Gibson组装克隆,我们生成了双sgRNA CRISPR/Cas9-GFP载体,
现代航天器和运载火箭的设计更倾向于降低系统级设计和组装的复杂性。为了在降低这些复杂性的同时保持较高的整体系统性能,使用智能材料和智能结构部件是一种众所周知的做法,目前越来越受到空间系统设计人员的关注。本文讨论了智能空间结构的概念,特别是用于航天器和运载火箭应用的嵌入光纤传感器 (OFS) 的碳纤维复合材料结构。本研究重点介绍了此类油箱的操作要求以及光纤传感器实现的智能功能。对于后者,对光纤布拉格光栅传感器 (FBG) 和基于光频域反射仪 (OFDR) 的分布式光纤传感器 (DOFS) 进行了定量比较,以说明它们的核心性能参数,例如灵敏度、传感范围、动态测量能力和空间分辨率。与传统电子传感器相比,光纤传感器在恶劣环境中的性能和可靠性提高,同时尺寸、质量和功耗降低。嵌入碳纤维结构的光纤传感器已证明其能够提供准确的实时温度测量和监测结构完整性,同时精确检测可能的破裂和故障点,如文献综述中讨论和展示的那样。光纤传感在智能推进剂储罐中的应用可能会扩展到检测流体泄漏,还可以通过温度映射提高推进剂计量的精度,并可用于地面鉴定、飞行前测试以及在轨运行、状况和结构健康监测。本文介绍了一种在复合材料压力容器中嵌入 FOS 的最佳方法,并讨论了光纤传感器的相关放置和定位方法,并结合了一个简化的单组分分析应力-应变传递模型,该模型推导出沿最大主方向(即 σ Max Principal )的应力分量。这种新方法被认为可用于在复合材料结构(例如航天器中的压力容器和轻质结构)中最佳地使用嵌入式 FOS。人们相信,简化的模型将为有效的数据解释和处理铺平道路,利用航天器上有限的计算资源。
从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn
从2027年2月开始,所有新的牵引力电池,两轮车辆蝙蝠和工业电池的容量超过2 kWh,在欧盟销售,将需要数字电池护照。目的是确保电池价值链中的适用和可持续性,减少环境影响并鼓励电池的次要使用。随着Fraunhofer生产系统与设计技术IPK的参与,电池通行证委员会正在开发有关实施护照的内容和技术的框架和建议。研究人员负责设计和实施技术标准。从4月22日至2024年26日,他们将在汉诺威·梅斯(Hannover Messe)(霍尔2,B24厅),呈现一份技术参考标准草案,该标准签署了启用电池护照,以及所有类型的数字程序通行证 - 将以可扩展性和可相互影响的方式实现。电池是过渡到气候友好的移动性和广泛使用可再生能源的关键。作为电动汽车的关键组件,需要可持续使用和使用它们,并轻松地将其重新融合到材料周期中。最重要的是要尽可能延长整个电池系统的生命周期,并在首次使用后回收原始资源,材料和组件。还需要形成透明供应链,从原材料一直到电池供应。这也会影响内置在电动自行车和电动踏板车中的LMT(光线运输方式)。将来,制造商将需要记录其产品制造,使用和处置所产生的所有排放。为了支持这些野心,《新的欧盟电池法》将需要用于所有牵引力的所有牵引力,两轮车电池和工业电池,其容量超过2027年2月。电动汽车电池周围的透明度电池护照的目的是支持蝙蝠的生命的无缝文档,从原材料提取和生产到使用,重复使用和回收。它保存了电池起源的记录,并记录了相关用途。到此为止,它可以全面地描述供应链的可持续性和责任的数据,例如碳足迹的数据,原始材料提取的工作条件,电池材料和组件,包含有害物质,
DNA编码的图书馆(DEL [1])技术已成为行业中最快,最具成本效益的筛查平台之一,既可以进行HIT Discovery [2],以及最近在药物发现计划的早期阶段的可药用性评估和可药用性评估和可药用性评估和成功的疗法优先级。[3] DEL的关键原理基于化学构建块(BBS)的库成员的组合(合成),以及以化学反应和DNA连接的交替方式,具有独特的DNA序列(BARCODES)的每个BB的相应标记。类似于噬菌体技术,[4]这种物理联系(图1)具有独特的DNA条形码的小有机分子可以随时通过下一代测序(NGS)反应每个分子的化学身份(结构)。[5]最初是由Brenner和Lerner在1992年的一份理论论文中提出的[6],直到2004年,由于NGS的显着进步,几个学术组[7] [7]通过在杰出的IP空间中及其新的商业探索来降低了多个编码方案和图书馆设计的实施,从而将技术和图书馆设计的多次实施降低。可归因于特定编码系统,可以将组合的库(池)组合在单个试管中,并且可以立即将潜在配体的双重体现为混合物,以简单的一日结合实验(Panning)(panning)均可筛选为选择的靶标(一般而言,通常是高纯度和质量的重组蛋白)。TIBCO Spotfire)。图书馆成员的DNA标签可通过聚合酶链反应(PCR)进一步扩增,因此,在(热)从目标中(热)洗脱后,可以检测并明确检测和明确地识别出多量的粘合剂。[9]与背景(定义的矩阵/非目标控制)相比,通过计算优先粘合剂的富集比(ER)或得分[10]来评估所获得的测序数据,并使用专用的化学分析软件(例如 div>> div>)显示结果。在同一文库中识别模式或指纹(化学系列)以及在不同的库中,有助于歧视与非结合图书馆成员的结合。delt在提供罗氏和外部的药用化学程序程序的新颖(且通常)的化学起点方面具有鲁棒性。毫不奇怪,Delt现在在筛选Armamen-
(材料科学与工程系,康奈尔大学,纽约州纽约市,14850,美国)“通过分子在有机无机纳米材料界面上通过分子形成和功能”互动在基本结构形成过程中起着至关重要的作用,以及有机构造组合材料的功能和特性。本演讲将概述基于低摩尔质量表面活性剂的有机分子自动化现象以及大分子分子块共聚物的这种功能性纳米杂化物的化学和物理。这些现象用于构造各种定期多孔无机固体,包括绝缘体,半导体,金属和超导体。工作将涵盖在热力学平衡处或接近的结构形成,以及系统远离平衡的系统。实验将与理论预测进行比较,以提供对形成原理和特定特性的物理见解。所描述的工作的目的是了解基本的基本化学,热力学和动力学形成原理以及纳米结构 - 普罗托关系相关性,从而使结果能够在广泛的材料系统中对结果进行概括。将表明,随着针对原子结晶固体建立的概念被转化为介于镜的周期性crys-talline固体 - 从软物质自组装中衍生出的原子结晶固体,这些材料中的软凝结和硬凝结物理学之间的区别开始变得模糊。参考:1。2。SCI。 11,1261-1270(2018)。 3。SCI。11,1261-1270(2018)。 3。11,1261-1270(2018)。3。此类材料表现出从Otpics/纳米光子学到运输到量子现象的大量新物质,包括量子现象,包括经常性和受拓扑保护的量子状态。在可能的情况下,谈话将尝试将循环从高级材料的基本方面整理到应用到应用,从纳米医学到分离过程,再到储能和转换。K。Ma,Y。Gong,T。Aubert,M。Z。Turker,T。Kao,P。C。Doerschuk,U。Wiesner,由表面活性剂胶束导演的高度对称,超质无机笼子的自组装,自然558(2018),577-580。 J. G. Werner,G。G。G.Rodríguez-Calero,H。D。Abruña,U。Wiesner,块共聚物衍生的3-D连接多功能多功能多功能甲状腺纳米杂种,用于电气储存,能量环境。 y。 Sun,K。Ma,T。Kao,K。A. Spoth,H。Sai,D。Zhang,L。F. Kourkoutis,V。Elser,U。Wiesner,U。Wiesner,介孔二氧化硅纳米粒子的途径,带有DodeCagonal Tilling,Nat,Nat。 社区。 8(2017),252; doi:10.1038/s41467-017-00351-8。 4。 S. W. Robbins,P。A. Beaucage,H。Sai,K。W. Tan,J。P. Sethna,F。J. Disalvo,S。M. Gruner,R。B. Van Dover,U。Wiesner,U。Wiesner,Block共聚物自组装指导的介导性甲状腺高胶状超级con-SuperCon-puctors Science-Science-Science,e11015。 5。 K。W. Tan,B。Jung,J。G. Werner,E。R. Rhoades,M。O. Thompson,U。Wiesner,瞬态激光诱导的诱导的层次层次多孔结构,来自块共聚物自我组装,科学349,54-58(2015)。 6。 社区。 5,3247(2014)。 7。 transl。 Med。 8。K。Ma,Y。Gong,T。Aubert,M。Z。Turker,T。Kao,P。C。Doerschuk,U。Wiesner,由表面活性剂胶束导演的高度对称,超质无机笼子的自组装,自然558(2018),577-580。J. G. Werner,G。G。G.Rodríguez-Calero,H。D。Abruña,U。Wiesner,块共聚物衍生的3-D连接多功能多功能多功能甲状腺纳米杂种,用于电气储存,能量环境。y。Sun,K。Ma,T。Kao,K。A. Spoth,H。Sai,D。Zhang,L。F. Kourkoutis,V。Elser,U。Wiesner,U。Wiesner,介孔二氧化硅纳米粒子的途径,带有DodeCagonal Tilling,Nat,Nat。社区。8(2017),252; doi:10.1038/s41467-017-00351-8。4。S. W. Robbins,P。A. Beaucage,H。Sai,K。W. Tan,J。P. Sethna,F。J. Disalvo,S。M. Gruner,R。B. Van Dover,U。Wiesner,U。Wiesner,Block共聚物自组装指导的介导性甲状腺高胶状超级con-SuperCon-puctors Science-Science-Science,e11015。5。K。W. Tan,B。Jung,J。G. Werner,E。R. Rhoades,M。O. Thompson,U。Wiesner,瞬态激光诱导的诱导的层次层次多孔结构,来自块共聚物自我组装,科学349,54-58(2015)。6。社区。5,3247(2014)。 7。 transl。 Med。 8。5,3247(2014)。7。transl。Med。8。Z. Li,K。Hur,H。Sai,T。Higuchi,A。Takahara,H。Jinnai,S。M. Gruner,U。Wiesner,Wiesner,链接了三维网络二进制二进制金属纳米纳米粒子 - 特里布洛克terpolymer terpolymer superstruc- superstruc- sustruc- supstruc- supstruc- supstruc- nat,NAT,链接实验和理论。E. Phillips, O. Penate-Medina, P. B. Zanzonico, R. D. Carvajal, P. Mohan, Y. Ye, J. Humm, M. Gönen, H. Kaliagian, H. Schöder, H. W. Strauss, S. M. Larson, U. Wiesner, M. S. Bradbury, Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe,科学。6(2014),260RA149。 H。Sai,K。W. Tan,K。Hur,E。Asenath-Smith,R。Hovden,R。Hovden,Y。Jiang,M。Riccio,M。Riccio,D。A. Muller,D。A. Elser,V。Elser,L。A. Estroff,L。A. M. Gruner,S。M. Gruner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,Hierarchical Porof to Block Copolymers copolymers,Science 341,530-533-53.34(530)。 9。 M. A. Noginov,G。Zhu,A。M。Belgrave,R。Bakker,V。M。Shalaev,E。E. E. E. Narimanov,S。Stout,E。Herz,E。Herz,T。Suteewong,T。Suteewong,U。Wiesner,U。Wiesner,Spaser基于Spaser的Nanolaser的演示,Nature 460(2009),1110-1112。6(2014),260RA149。H。Sai,K。W. Tan,K。Hur,E。Asenath-Smith,R。Hovden,R。Hovden,Y。Jiang,M。Riccio,M。Riccio,D。A. Muller,D。A. Elser,V。Elser,L。A. Estroff,L。A. M. Gruner,S。M. Gruner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,U。Wiesner,Hierarchical Porof to Block Copolymers copolymers,Science 341,530-533-53.34(530)。9。M. A. Noginov,G。Zhu,A。M。Belgrave,R。Bakker,V。M。Shalaev,E。E. E. E. Narimanov,S。Stout,E。Herz,E。Herz,T。Suteewong,T。Suteewong,U。Wiesner,U。Wiesner,Spaser基于Spaser的Nanolaser的演示,Nature 460(2009),1110-1112。
L.1968,C.266§1,eff。1968年9月4日。由L.1970,c。修订。 263,§1,eff。1970年11月2日; L.1979,c。 254,§1,eff。1979年12月21日; L.1984,c。 110,§1,eff。1984年8月3日; L.1985,c。 119,§1,eff。1985年4月9日; L.1999,c。 380,§4,eff。2000年1月14日; L.2001,c。 369,§1,eff。2002年1月8日; L.2005,c。 58,§1,eff。2005年3月28日。52:9M-1。 创建佣金;会员资格;赔偿;空缺;投票必不可少。 特此创建了一个永久州调查委员会。 委员会应由四名成员组成,称为专员。 委员会的两名成员应由州长任命。 每个人应由参议院总统和大会发言人任命。 每个成员应任期四年,直到其继任者任命和资格为止。 任何人都不得连续任期超过两个四年任期和作为委员会成员的未到期任期的任何部分。 州长应指定其中一名成员担任委员会主席。 由参议院总统任命的委员会成员和大会的议长和州长任命的至少一名成员应被授予该州的律师。 委员会的成员或雇员不得担任任何其他公职或公共工作。 不超过两个成员属于同一政党。 术语开始。 52:9M-2。52:9M-1。创建佣金;会员资格;赔偿;空缺;投票必不可少。特此创建了一个永久州调查委员会。委员会应由四名成员组成,称为专员。委员会的两名成员应由州长任命。每个人应由参议院总统和大会发言人任命。每个成员应任期四年,直到其继任者任命和资格为止。任何人都不得连续任期超过两个四年任期和作为委员会成员的未到期任期的任何部分。州长应指定其中一名成员担任委员会主席。由参议院总统任命的委员会成员和大会的议长和州长任命的至少一名成员应被授予该州的律师。委员会的成员或雇员不得担任任何其他公职或公共工作。不超过两个成员属于同一政党。术语开始。52:9M-2。52:9M-2。委员会的成员不得在任命委员会之前的一年内担任任何选修办公室或成为任何选修办公室的候选人。委员会成员不得在委员会成员终止任职之后的一年内担任任何选修办公室,或成为任何选修办公室的候选人。委员会的每个成员应获得35,000美元的年薪。每个成员还有权偿还实际的费用,实际上必须在履行其职责时发生,包括州以外的旅行费用。委员会的空缺应以与原始任命相同的方式填写未到期的条款。委员会的空缺应在120天内由适当的任命当局填补。如果适当的任命当局在该时间段内没有填补空缺,则空缺应在60天内由最高法院首席大法官填补。委员会的空缺不得损害其余成员行使委员会所有权力的权利。委员会做出的任何决定均应以多数票为单位。“多数投票”是指委员会至少三名成员的肯定投票,如果委员会没有空缺或委员会至少有两个成员的肯定投票。52:9M-1.1 1978年12月1日之后任命的成员条款。52:9M-1.3某些成员条款的限制。 职责和权力。 52:9m-3。 52:9m-4。 52:9m-4.1。52:9M-1.3某些成员条款的限制。职责和权力。52:9m-3。52:9m-4。52:9m-4.1。尽管有本法第1条的规定(C.52:9M-1),并且为了实现委员会成员条款的误解,尽管他们最初被任命为最初任命的术语,但1978年12月1日之后任命的成员应如下:由州长任命的第一位成员,36个月; 36个月;由州长任命的第二任成员,18个月;由参议院总统任命的成员30个月;由大会发言人任命的成员24个月。此后,成员的条款应按照P.L.1968,C.266,S.1(C.52:9M-1)52:9M-1.2在2005年3月28日之后或任命的国家调查委员会成员条款。条款的结尾,尽管P.L. 1968,C.266(C.52:9M-1)的第1条和最初任命成员的条款,但在P.L. 2005年生效的日期,c。 58(C.52:9M-1.2等)应在下午12点之前结束,以下日期:州长在2004年11月5日或之后任命的任期将于2008年12月31日结束;州长在2001年12月31日以后但2004年11月之前任命的成员任期,将于2007年12月31日结束;参议院总统在2002年12月31日之前任命的成员任期将于2006年12月31日结束; 2001年12月31日之后,大会发言人任命的成员任期将于2005年12月31日结束。b。委员会有责任与以下方面进行调查:州长撤职的公职人员; b。52:9m-4.2。根据a的条款结束后的条款。在本节中,任命的成员的四年任期应按照P.L. 1968,c.266(C. 52:9M-1)的第1条所示,以实现术语惊人的条款,下一个成员的每个任期从下一个任命开始于中午12点开始,如下所示:成员的任期为一项任期,该任期是由成员任期的,该任期是在2008年12月31日,2008年12月31日开始的。州长的第二次任命,该任期应于2007年12月31日开始;参议院主席的任命应于2006年12月31日开始;并由大会发言人任命,该任期应于2005年12月31日开始。在2005年P.L.2005的生效日期,c。 58(C.52:9M-1.2等)应遵守a的规定。 P.L.2005的第5节,c。 58(c.52:9m-1.2),应有资格被重新任命为委员会,从b小节规定的开始,不超过一个四年期。 P.L.2005的第5节,c。 58(C.52:9M-1.2)。忠实的执行和有效执行国家法律,特别是参考,但不限于有组织的犯罪和球拍; b。公职人员和公职人员的行为以及公共公司和当局的官员和雇员; c。有关公共和平,公共安全与公共司法的任何事情。调查撤职的公职人员和有关法律管理和执行的建议。52:9m-4.3。52:9m-5。在州长的指示下或通过立法机关的并行决议,委员会应进行调查,以其他方式协助以下方面:在撤职方面,州长向任何其他人或机构提出建议; c。州长向立法机关提出建议,以更有效地执行法律所需的法律规定或增加法律规定; d。立法机关考虑更有效地管理和执行法律所需的法律规定的变化或增加法律规定。调查部门或机构。在立法机关的指示或请求下,通过并发决议,州长或任何部门,董事会,局,委员会,委员会,权威或其他机构的负责人,或国家是一方是当事方,委员会应调查任何此类部门,董事会,董事会,局,委员会,委员会,授权,其他机构或其他机构的管理或事务;但是,前提是,如果委员会确定立法机关,州长或任何部门,董事会,局,委员会,委员会,权威或其他机构的调查请求,或国家是一方是一方,则超出委员会进行此类调查的能力,他们可能会通过解决方案或征求该立法的案件来询问该案件的行为,以征求该委员会的要求,以审查这些委员会的要求。公开听证会;通知参议院总统和大会议长。向州长和立法机关提出建议。在通过授权公开听证会的决议后的5天内,在公开听证会之前的7天内,委员会应告知参议院总统和大会发言人安排了公开听证会。总统和发言人应在审查听证会的主题后,请参阅每个房屋的适当常务委员会的通知。委员会应在举行公开听证会的120天内向州长和立法机关提出有关他们因公开听证而制定的行政或立法诉讼建议的建议。有关未决法案或决议的建议;向赞助商和常设立法委员会主席的建议。在提出有关立法机关的任何一家众议院提出的账单或决议的建议之前,委员会应向该法案或决议的发起人提供建议,以及任何常设立法委员会主席,该法案或决议已转介到该法案或决议。与执法人员合作。应总检察长,县检察官或任何其他执法官员的要求,委员会应与他们合作,建议并协助他们执行其官方权力和职责。52:9m-6。对违反联邦法律的调查。委员会应与美国政府的部门和官员合作,以调查违反该州的联邦法律。