常规激光器通常支持良好的模式梳子。将许多谐振器耦合在一起形成较大的复杂腔,可以设计模式的空间和光谱分布,以实现敏感和可控制的片上光源。网络激光器由染料掺杂聚合物互连的波导形成,尽管与增益漂白具有高度敏感和可定制的激光光谱,但具有随机激光的巨大潜力。此处介绍了片上半导体网络激光器,并通过将键入的INP结合键入粘合到SIO 2∕Si Wafer上,作为可重现,稳定且可设计的随机激光器,具有丰富的多态光谱和较低的室温和室温较低的室温。阈值低至60°JCM -2脉冲-1。在实验和数字上进一步显示,网络密度直接影响模式空间分布,并且在大型密集网络中仅在10-20个连接的链路上将激光模式定位在空间上。INP网络激光器也稳定以泵送照明,并对泵图案中的小变化敏感。这些研究为在强大的半导体平台中量身定制的随机激光器的未来设计奠定了基础,对感应,信号处理,密码和机器学习产生了影响。
半导体制造业正在经历一场数据驱动的革命,推动力来自电子设备和智能技术的进步。这种转变显著增加了数据的数量、速度和种类,从而增强了知识提取和流程优化。然而,传统的解决方案,例如“跨行业数据挖掘标准流程”、“数据库中的知识发现”和“团队数据科学流程”,不足以解决实时分析、高维数据和特定领域的挑战。为了弥补这些差距,我们引入了一个将可解释的人工智能与设计科学研究方法相结合的新框架。该框架的主要贡献包括实时处理能力、领域知识的集成以及人工智能 (AI) 模型的增强透明度,从而确保准确且可解释的决策。该框架通过晶圆图聚类展示,为实施数据挖掘和人工智能项目提供了全面、行业特定的系统指导,提供了高效、易于理解的解决方案,可以改善半导体制造。
署名4.0国际(CC BY 4.0) 本作品根据知识共享署名4.0国际许可提供。使用本作品即表示您同意受本许可条款的约束(https://creativecommons.org/licenses/by/4.0/)。 署名——您必须引用本作品。 翻译——您必须引用原作品、标明对原文的修改并添加以下文字:如果原作品与译文有任何出入,则仅以原作品的文本为准。 改编——您必须引用原作品并添加以下文字:这是对经合组织原作品的改编。本改编中表达的观点和采用的论点不应被报道为代表经合组织或其成员国的官方观点。 第三方材料——本许可不适用于作品中的第三方材料。如果使用此类材料,您有责任获得第三方许可并负责任何侵权索赔。未经明确许可,您不得使用 OECD 徽标、视觉标识或封面图片,也不得暗示 OECD 认可您使用该作品。根据本许可产生的任何争议应根据常设仲裁法院 (PCA) 2012 年仲裁规则通过仲裁解决。仲裁地点为巴黎(法国)。仲裁员人数为一人。
这些芯片的使用虽然普遍,但也很肤浅。按数量计算,中国芯片仅占所有芯片的 2.8%,按价值计算,仅占芯片总数的 1.3%。换句话说,尽管中国芯片出现在绝大多数受访公司的产品中,但目前它们在大多数单个产品中仅占总芯片数量的一小部分。除了最终用户,BIS 还调查了半导体供应商。BIS 从 22 家组织收集了他们使用中国代工厂进行外包生产的数据。接受调查的美国芯片供应商对中国代工厂的使用很少:这些工厂生产的芯片占受访公司芯片总销售额的不到 2%。尽管如此,几家芯片供应商表示,中国的产能扩张开始带来价格压力,中国对代工厂和下游行业的补贴,以及在中国使用中国原产内容的压力,可能会影响他们的竞争地位。
摘要。在全球半导体技术竞争不断升级的背景下,本文批判性地审视了中国芯片行业供应链的弱点和优势,并将其与美国严格的出口限制背景进行了对比。认识到半导体在国家安全和经济发展中的战略重要性,我们深入研究了华为和高通这两家代表不同大陆的行业巨头之间持续贸易冲突的细微动态。这一分析揭示了对抗的根本原因,突出了技术实力与地缘政治战略之间的相互作用。基于广泛的文献综述和案例研究,我们的研究强调了中国加强国内芯片生态系统的必要性。我们提出了一种多方面的方法来优化供应链,旨在减轻加剧贸易紧张局势的依赖性。该战略包括培育自主创新、加强利益相关者之间的合作以及多样化采购渠道。本文承认其局限性,主要是美国政策的不断发展以及获取专有技术综合数据的固有挑战。概述了未来的研究方向,强调需要持续监测政策变化并培养竞争国之间更加透明的信息交换框架。
图18。(a)化学计量对Ag a bi a bi b i a+3b化合物的结构的影响,(b)BII 3,(c)AGBII 4(缺陷型旋转结构)和(d)AGBII 4(CDCL 2-type结构)的碘化物亚晶格。化合物中化合物的晶体结构。经过国际材料评论的许可,69(1),(2024)。[139]版权所有©2024,Sage Publications。................................................................................................ 50 Figure 19. a) Device layout of AgBiI 4 PV cell and b) schematic of cell preparation needed before electrode deposition with grey area being untouched thin film layers and white area being area to be scratched off c) mask for gold electrode deposition (white area is area of deposition) ...........................................................................................................................................................................................雏菊1.0的工作流程。这些图像是预处理的,用于图像分析,然后使用Harris Kepoint检测到用于识别图像中缺陷的存在的模型将缺陷分类为缺陷。....................... 68 Figure 21.雏菊2.0工作流程。给出了雏菊1.0标记为“无缺陷”的图像被赋予谷物面膜以计算平均晶粒尺寸。标记为“缺陷”的图像被赋予缺陷面罩,以计算缺陷覆盖范围百分比和谷物面罩。在XRD模式A)CS 3 Bi 2 Br 3 I 6 B)CS 3 Bisbbr 3 I 6和C)CS 3 SB 2 BR 3 I 6,使用PAWLEY方法拟合。The residuals and agreement indices are shown ........................................................................................................ 76 Figure 23.XRD模式。显示了残差和协议指数。............................... 77 Figure 24.XRD拟合A)CS 3 BI 2 I 9 B)CS 3 BI 2 BR 9 C)CS 3 SB 2 I 9和D)CS 3 SB 2 BR 9反对2D。0D, 2D and 0D reference patterns respectively add goodness of fit ............................................................................................................ 78 Figure 25.a)cs 3 bi 2 i 9沿投影载体[006],b)cs 3 bi 2 br 9沿投影矢量[201],c)cs 3 sb 2 i 9沿投影矢量[004]和d)cs 3 sb 2 cs 3 sb 2 br 9沿投影矢量[003]a)cs 3 bi 2 I 9,b)cs 3 bi 2 br 9,c)cs 3 sb 2 i 9和d)cs 3 sb 2 br 9 ...................................................................................... 80图27。(a)CS 3 B 2 x 9系列的吸光度光谱从UV VIS和PS数据编辑,以及(b)Tauc图....... 82图28。pl衰变光谱在a)5.5k,b)40k,c)150k和d)300K pl衰变光谱,从0-40ns以5NS间隔从0-40NS开始。 在 agbii 4的XRD拟合,用于a)r3̅MH参考和b)fd3̅m参考。pl衰变光谱,从0-40ns以5NS间隔从0-40NS开始。在agbii 4的XRD拟合,用于a)r3̅MH参考和b)fd3̅m参考。pl衰变光谱在a)5.5k,b)40k,c)150k和d)300k pl衰变光谱,从0-40ns以5NS间隔为0-40NS。 在 pl衰变动力学在不同温度的a)cs 3 bi 2 i 9,b)cs 3 sb 2 i 9和cs 3 bi 2 i 9和cs 3 sb 2 i 9的cs 3 sb 2 i 9和c)合并为比较。 ..................................................................................................................................... 86 Figure 31. CS 3 Bi 2 I 9(顶部)和CS 3 SB 2 I 9(底部)的PL的依赖性依赖 PL peak wavelength vs temperature of a) Cs 3 Bi 2 I 9 and b) Cs 3 Sb 2 I 9 and the FWHM vs temperature plot of c) Cs 3 Bi 2 I 9 and d) Cs 3 Sb 2 I 9 .................................................................................................................................. 87 Figure 33. TA Spectra of a)b) Cs 3 Bi 2 I 9 , c)d) Cs 3 Sb 2 I 9 and e)f) Cs 3 Bi 2 Br 9 taken with 350 nm pump wavelength and 100 μW fluence .................................................................................................................................................... 88 Figure 34. ta动力学比较a)cs 3 bi 2 i 9,b)cs 3 bi 2 i 9,c)cs 3 sb 2 i 9,d)cs 3 sb 2 i 9和e)cs 3 sb 2 i 9和e)cs 3 bi 2 br 9 bi 2 br 9 ........................................... 35。 ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 94图36。pl衰变光谱,从0-40ns以5NS间隔为0-40NS。在pl衰变动力学在不同温度的a)cs 3 bi 2 i 9,b)cs 3 sb 2 i 9和cs 3 bi 2 i 9和cs 3 sb 2 i 9的cs 3 sb 2 i 9和c)合并为比较。..................................................................................................................................... 86 Figure 31.CS 3 Bi 2 I 9(顶部)和CS 3 SB 2 I 9(底部)的PL的依赖性依赖PL peak wavelength vs temperature of a) Cs 3 Bi 2 I 9 and b) Cs 3 Sb 2 I 9 and the FWHM vs temperature plot of c) Cs 3 Bi 2 I 9 and d) Cs 3 Sb 2 I 9 .................................................................................................................................. 87 Figure 33.TA Spectra of a)b) Cs 3 Bi 2 I 9 , c)d) Cs 3 Sb 2 I 9 and e)f) Cs 3 Bi 2 Br 9 taken with 350 nm pump wavelength and 100 μW fluence .................................................................................................................................................... 88 Figure 34.ta动力学比较a)cs 3 bi 2 i 9,b)cs 3 bi 2 i 9,c)cs 3 sb 2 i 9,d)cs 3 sb 2 i 9和e)cs 3 sb 2 i 9和e)cs 3 bi 2 br 9 bi 2 br 9 ........................................... 35。....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 94图36。sem agbii 4 a)在合成的当天未涂层,b)合成后23天未涂层,c)在合成当天与螺旋罗涂有螺旋罗,而d)d)在合成后23天与spiro涂层。.................................................................................................................................................................................................................................................................................................................................................................................................XRD of a) uncoated AgBiI 4 left in ambient air b) AgBiI 4 coated with spiro-OMeTAD left in ambient air .............................................................................................................................................................................. 95 Figure 38.. SEM images of AgBiI 4 synthesized with hot-casting method at a) 100 ᵒC b)110ᵒC,c)120ᵒC,d)130ᵒC,e)140ᵒC和f)150ᵒC。The temperatures specified are the set temperature of the hotpate for both the substrate and precursor solution prior to spin coating ........................................................................................ 97 Figure 39.用热铸造方法合成的Agbii 4的SEM图像,标记的温度是旋转涂层之前的底物和前体溶液的热板的温度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。agbii 4的SEM图像在110°C时以22s的抗可溶性滴注在110°C时合成。a)未使用反溶剂,b)氯苯,c)IPA,d)甲苯........................................................................................................................................................................................................................................................................................................................................... 99图41.sem的Agbii 4的图像,在110°C下合成了DMSO与DMF的比例为A)1:1 B)1:1 B)1 B)1 B)1 B)1 B)1 B)1 B)1:1 22S C)3:1 d)3:1 D)3:1 D)3:1 D)在22s e)5:1 f)5:1 f)5:1 f)10:1 f)10:1 f)at 22:1 f)at 22:1 g) chlorobenzene dripping at 22s i) pure DMSO and j) pure DMSO with chlorobenzene dripping at 22s ........................................................................................................ 100sem的Agbii 4的图像,在110°C下合成了DMSO与DMF的比例为A)1:1 B)1:1 B)1 B)1 B)1 B)1 B)1 B)1 B)1:1 22S C)3:1 d)3:1 D)3:1 D)3:1 D)在22s e)5:1 f)5:1 f)5:1 f)10:1 f)10:1 f)at 22:1 f)at 22:1 g) chlorobenzene dripping at 22s i) pure DMSO and j) pure DMSO with chlorobenzene dripping at 22s ........................................................................................................ 100
总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 总主席 程序 ...
半导体市场 全球半导体市场有望大幅扩张,预计将从 2024 年的 6230 亿美元增长到 2035 年的 10740 亿美元,年复合增长率高达 5.08%。半导体在消费电子、汽车、电信和航空航天等每一项现代技术进步中无处不在,因此值得注意的是它们在我们日常生活中占据的重要性。由智能计算机和联网设备推动的工业 4.0 的兴起正在彻底改变制造业和生产,进一步推动对先进半导体技术的需求。截至 2024 年 7 月,全球半导体集团销售额达到 513 亿美元,比 2023 年 7 月同期增长 18.7%,这是销售额连续第四个月增长。美洲地区领先,销售额同比增长 40.1%,而中国和亚太地区也显示出显着增长。销售热潮是指对电子产品、数据中心芯片和集成电路的需求增长。尽管欧洲和日本的市场呈下降趋势,但随着人工智能、物联网和汽车技术的进步,全球市场正从疫情相关的衰退中良好反弹。半导体通常被称为现代电子产品的支柱。这些元素在从智能手机和计算机到先进的汽车系统等各种设备中发挥着重要作用。制造商面临的挑战是要求进一步开发技术,使用越来越小、更高效的芯片和更多的晶体管。人工智能和通信都继续依赖微处理器的进步,导致半导体增长速度更快。随着全球对更智能、更快速设备的需求不断增长,半导体行业将在塑造未来方面发挥更加关键的作用。该行业也是关键的就业驱动力,仅在美国就有超过 25 万名工人就业,支持超过一百万个工作岗位。半导体行业的上升轨迹凸显了其在推动未来技术发展方面的核心地位。
