摘要:由于它们具有出色的学习有用表示的能力,在大型在线数据集中预先培训的神经网络最近已成为神经科学家的首选工具。相反,通过利用大规模的神经影像实验,我们表明我们可以采用随机初始化的神经网络,并训练它们直接预测fMRI记录,从而实现可以通过其他任务来操纵,解释和重新实现其他任务的功能性脑模型的构建。我们提出了一种自下而上的方法,该方法使用了观察大量自然图像的多个主题中收集的数据,我们使用它来发现高级视觉皮层中的语义选择性强大模式。我们还使用模型的预测来指导可以推动感兴趣大脑区域的新颖,分布图像的产生,并通过进一步的fMRI实验来验证对这些图像的响应。此外,我们证明了我们的脑信息模型可以提高不同的AI任务的性能,这表明用于预测不同大脑领域的表示形式具有特定的功能。这种方法建立在大脑和世界的综合模型上,这可能导致新型的脑部计算机接口。
摘要:数字病理学和人工智能的进步已经提出了建立客观诊断,预后和治疗性反应和抵抗预测模型的潜力。在本次演讲中,我们将讨论我们的工作:(1)与癌症诊断和亚型中的示例进行弱监督的整个幻灯片分类的数据有效方法(Nature BME,2021),确定了未知主要癌症的起源(自然,2021年)(2021年)和Allognaft Repptional repotition(Nature Medical,202222)(2022)(2) (癌细胞,2022; IEEE TMI,2020; ICCV,2021; CVPR,2024; ICML,2024)。(3)建立病理学单形和多模式基础模型,与语言和基因组学对比(自然医学,2024a,自然医学2024b,CVPR 2024)。(4)为病理学开发通用的多模式生成型副驾驶和聊天机器人(自然,2024年)。(5)3D计算病理学(Cell,2024)(6)计算病理学算法中的偏见和公平性(Nature Medicine,2024; Nature BME 2023)(7)诊断病理学和生物医学研究的代理AI工作流程。
CMS沿着大型强子对撞机环位于CERN。它以40 MHz的速率记录了质子质子碰撞的质子胶原碰撞。每个事件记录来自〜10 2 M传感器的信息。多亏了触发系统,每秒仅保存100K事件。〜6 GB/s输出。
摘要:近年来可解释的AI(XAI)取得了长足的进步,提供了有价值的理论和技术来解释复杂的机器学习模型。然而,这些方法通常用于解释复杂数据集以进行科学发现,尤其是涉及高维度数据(例如基因表达谱)的数据集。这些数据集对于理解癌症生物学至关重要,需要新颖的方法才能完全释放XAI的潜力。在本演讲中,我将探讨将XAI应用于基因表达数据的实际挑战,并强调其潜力和局限性。我将提出创新的策略,以适应XAI技术以加速癌症药理学和癌症系统生物学中的数据驱动发现。讨论将阐明解决这些挑战的方式如何导致深刻的生物学见解和有影响力的临床意义。通过弥合先进的XAI原理和技术之间的差距以及现实世界生物医学数据集的需求,该演讲旨在激发AI和生物医学相交的更强大方法论的发展,为生物医学研究中创新的新时代铺平了道路。
摘要:近年来可解释的AI(XAI)取得了长足的进步,提供了有价值的理论和技术来解释复杂的机器学习模型。然而,这些方法通常用于解释复杂数据集以进行科学发现,尤其是涉及高维度数据(例如基因表达谱)的数据集。这些数据集对于理解癌症生物学至关重要,需要新颖的方法才能完全释放XAI的潜力。在本演讲中,我将探讨将XAI应用于基因表达数据的实际挑战,并强调其潜力和局限性。我将提出创新的策略,以适应XAI技术以加速癌症药理学和癌症系统生物学中的数据驱动发现。讨论将阐明解决这些挑战的方式如何导致深刻的生物学见解和有影响力的临床意义。通过弥合先进的XAI原理和技术之间的差距以及现实世界生物医学数据集的需求,该演讲旨在激发AI和生物医学相交的更强大方法论的发展,为生物医学研究中创新的新时代铺平了道路。
本课程将向学生介绍更大的达拉斯环境,并以不同的方式研究城市和一个地区。主要目的是发展学生对大达拉斯人的人民,机构和地点的了解,并知道它们之间的关系。该课程将向学生介绍多种纪律观点,以及如何使用这些观点来发展对单个大都市地区的复杂而复杂的理解。在课程结束时,学生将展示至少有两种理解城市的纪律方法。通过每周的课堂讨论,书面作业,考试和小组项目,学生将证明他们的能力阅读,写作和仔细,批判性地讲话以及进行主要研究。
摘要圆形极化光(CPL)的全范围,高敏性和可集成检测对于量子信息处理,高级成像系统和光学传感技术至关重要。然而,主流CPL探测器依赖手性吸收材料,因此响应波长有限,反应性低和辨别比不良。在这里,我们通过利用山谷材料观察手性光动量(SAM),提出了手性光检测器。精心设计的中心对称地材料可以保留光学SAM的迹象并高度增强其在近场的强度,作为一种将极化电子注入山谷材料的介质,然后通过Valley Hall效应检测到。这可以通过Valleytronic晶体管在室温下在室温下进行高灵敏度红外CPL检测,并且检测波长扩展到红外线。这种方法为手性光检测打开了途径,并提供了对光电传感中valleytronics潜在应用的见解。