摘要 - 该研究旨在实施能够自主检测绵羊目标并在2D占用图上代表它们的系统,其最终目标是促进在UXV平台上自主牧羊。本文详细介绍了Blackboard System的开发,Blackboard System是一种用于自动目标检测和映射的软件解决方案。使用Python和C编程语言,Blackboard系统将单眼深度感测与自主目标检测,以产生全面的深度和目标图。这些地图是合并的,以产生从高架相机的角度捕获的操作区域的详细的2D鸟视图。黑板系统的独特功能是其模块化框架,它允许无缝更新或更换其深度传感和目标检测模块。
这款新的商业化产品预计将在 MIC 技术学院 (MIC-IT) 进行最终组装和质量控制。因此,MIC-IT 的国家技能发展计划 (NSDP) 技术培训生将获得经验和增强的技能组合(例如热风、表面贴装焊接),使他们能够为无处不在的现代消费电子产品提供服务。皇家加勒比游轮公司已经在考虑将其用于增强 Steel Pan 娱乐。
访问和使用高质量,完整数据对于AI性能,准确性和可靠性至关重要。17在澳大利亚,包括正式立法和政策在内的数据法规通常被视为数据共享的障碍。澳大利亚统计局LED人士综合数据资产(PLIDA)和澳大利亚卫生与福利研究所LED国家健康数据中心(NHDH)是可用健康数据资产的示例。这些数据资产可以洞悉澳大利亚卫生局势和卫生的社会决定因素,并在司法管辖区进行协作努力,以改善数据可访问性和共享。学者和行业是AI健康数据的主要用户,但是学者可能会有机会通过2022年的数据可用性和透明度法来促进健康数据。
参与者:Rocky Mountain Human Services 首席执行官 Shari Repinksi 和 North Metro Community Services 首席执行官 Randy Brodersen
● 为潜在投资者提供建议,帮助他们采取行动改善潜在投资。 ● 将潜在的纳米比亚和国际合作伙伴与投资者或项目开发商联系起来。 ● 与公共投资团队合作,在需要时促进和协调公共投资的包装和准备工作。 ● 与私营部门合作,促进部门发展。 ● 确定正在处理的部门之间的制约因素。 ● 与公共和私营部门合作,解决已发现的制约因素。 ● 与研发团队合作,确保解决在此过程中发现的制约因素。 ● 支持政府发展优先子部门的努力。 ● 制定提案并打包投资项目以供推广
这项测试是开发的,其性能特征由ARUP实验室确定。尚未获得美国食品药品监督管理局的清理或批准。该测试是在CLIA认证的实验室进行的,旨在用于临床目的。
Ms Terenna Ng Yun Li, Executive, Nursing & Critical Care Ops, Ms Shirlene Toh, Principal Occupational Therapist, Allied Health Rehab, Ms Glenda Lee, Deputy Director, Facilities Project Services, Ms Guo Huiling, Senior Epidemiologist, OCEAN, Ms Kara Koh, Assistant Director, IT Office, Mr Yakob Bin Haron, Senior Manager, Biomedical Engineering, Ms. Xie Sihui,药房主要药剂师,李·耶女士,通用医学副顾问,
4 校正 56 4.1 辐射校准 56 4.1.1 传感器校准的主要元素 56 4.1.1.1 绝对辐射校准 – 从辐射到 DN 并反之 56 4.1.1.2 均匀性校准 57 4.1.1.3 光谱校准 57 4.1.1.4 几何校准 58 4.1.2 校准方法 58 4.1.2.1 发射前校准 58 4.1.2.2 机载校准 59 4.1.2.3 替代校准 59 4.2 大气 – 从辐射到反射或温度\发射率 60 4.2.1 将不同日期的图像校准为类似值 62 4.2.2 内部平均相对反射率 (IARR) 63 4.2.3 平场 63 4.2.4 经验线 63 4.2.5 大气建模 64 4.2.5.1 波段透射率计算机模型 66 4.2.5.2 逐线模型 67 4.2.5.3 MODTRAN 67 4.2.5.4 太阳光谱中卫星信号的第二次模拟 – 6s 代码 69 4.2.5.5 大气移除程序 (ATREM) 70 4.2.5.6 ATCOR 72 4.2.6 图像的温度校准 73 4.2.7 材料的热性能 73 4.2.8 从热图像中的辐射中恢复温度和发射率 77 4.3 几何校正 79 4.3.1 几何配准 80 4.3.1.1 平面变换 81 4.3.1.2 多项式变换83 4.3.1.3 三角测量 83 4.3.1.4 地面控制点 84 4.3.1.5 重新采样 85 4.3.1.6 地形位移 86 4.3.2 LANDSAT – 几何特性 90 4.3.2.1 TM 几何精度 90 4.3.2.2 TM 数据处理级别 90 4.3.2.3 原始数据 90 4.3.2.4 系统校正产品 90 4.3.2.5 地理编码产品 91 4.3.2.6 级别 A – 无地面控制点 91 4.3.2.7 级别 B – 有地面控制点 91
参议员 DAVID POCOCK:您提到了您所做的实验,让您的团队输入意见,然后让人工智能——您是否愿意提交一份关于生成结果差异的摘要?这是您可以做的吗? Jefferson 先生:我们可以在通知中提供有关该实验结果的更多详细信息。 Longo 先生:我记得,当委员会听取有关此事的汇报时,人工智能给出了我称之为“平淡无奇”的意见摘要。它没有误导,但很平淡。它确实没有抓住意见的内容,而人类能够提取细微差别和实质内容。我认为这不是一个糟糕的总结。 Jefferson 先生:是的。我们主要感兴趣的是,在参议院财政和公共管理参考委员会对咨询公司的调查中,公众提交的意见中提到了 ASIC。我们发现,正如主席所说,一般而言,这些摘要非常笼统,关于如何引用 ASIC 的细微差别并没有在 AI 生成的摘要中体现出来,而 ASIC 员工在做摘要工作时并没有体现出来。 参议员 DAVID POCOCK:是与一家澳大利亚公司合作吗? Longo 先生:我们自己做的。 Jefferson 先生:我们与位于澳大利亚的 AWS 合作完成了这项工作。我们使用了 Llama 2 大型语言模型,我相信它是 Meta 的产品。 参议员 DAVID POCOCK:AWS 是亚马逊网络服务,您使用了两家美国公司来帮忙? Jefferson 先生:基本上是的。…… 参议员 SHOEBRIDGE:您是否说过会接受参议员 Pocock 提出的提交报告的请求?您会有一份关于离线 AI 测试的报告。 Jefferson 先生:我们可以提供有关它的更多细节。隆戈先生:我能否向委员会坦诚相待?我会尽可能地坦诚相待,但要遵守公共利益豁免权。参议员 SHOEBRIDGE:我要求提交报告。如果您能注意到它,那么您就可以处理它。隆戈先生:我认为我们可以为委员会提供一些信息,以展示我们做了什么以及从中学到什么。参议员 SHOEBRIDGE:我要求提交报告;这就是我所要求的,我想您会注意到它?隆戈先生:好的。