● 需要在必须保护的生态环境中优化可可种植。据(Bessombes 2015)称,秘鲁是世界第二大可可出口国。
摘要如今,医疗和药物领域的快速改善增加了药物的多样性和使用。然而,诸如在疾病治疗中使用多种或联合药物的问题以及对非处方药的无敏使用的问题引起了人们对药物的副作用概况和治疗范围以及由于药物浪费而引起的副作用概况和治疗范围。因此,对各种培养基(例如生物学,药物和环境样本)中药物的分析是讨论的重要主题。电化学方法对于传感器应用是有利的,因为它们的易于应用,低成本,多功能性,高灵敏度和环保性。碳纳米材料,例如钻石样碳薄膜,碳纳米管,碳纳米纤维,氧化石墨烯和纳米原子石用于增强具有催化作用的电化学传感器的性能。为了进一步改善这种效果,它旨在通过将不同的纳米材料一起或与导电聚合物和离子液体等材料一起使用不同的碳纳米材料来创建混合平台。在这篇综述中,最常用的碳纳米型将根据电化学特征和理化特性进行评估。此外,将在过去五年中对最新研究中对电化学传感器的最新研究产生的影响进行检查和评估。
这项测试是开发的,其性能特征由ARUP实验室确定。尚未获得美国食品药品监督管理局的清理或批准。该测试是在CLIA认证的实验室进行的,旨在用于临床目的。
目前,联邦执法机构发布的公共用例清单尚未履行其透明度和问责制。例如,司法部的2022披露由一页信息组成,列出了联邦调查局单一使用AI,以用于“威胁进气处理系统”以分析犯罪技巧。2,该单页没有关于联邦调查局使用面部识别技术的信息,尽管该局已经将这种AI驱动的技术用于刑事调查已有近十年了。3同样,其他多个司法部执法机构对面部识别的使用零披露 - 从DEA到ATF,再到美国元帅 - 即使最近的政府问责办公室(GAO)审计报告了这些机构中每个机构对这项技术的大量使用。4,尽管DOJ在2023年更新了其披露,但其他一些用例中仍然不包括这些子代理中任何一个的使用面部识别。5也没有与使用车牌读取器使用有关的任何披露。
博士生应向地球,环境和行星科学提交申请(2025年1月3日的截止日期)。国际学生也应满足语言能力要求。潜在的研究生可以在申请之前向Vergopolan博士(Noemi.vergopolan@rice.edu)发送电子邮件至“潜在的博士生”。在电子邮件中,请包括以下项目:非官方的成绩单,课程vitae,三个参考文献的姓名和联系信息,以及他们为什么要加入该小组的简短个人陈述。我们非常感谢所有申请,但是考虑到大量提交的申请,请注意,只有入围面试的候选人才会收到通知。根据资金可用性,我们能够在秋季和春季学期接受学生。因此,注册时间是灵活的。薪酬:$ 33K/年的津贴,带福利加上全额学费($ 57K/年)。
海军优势 使用光纤 DTS 技术可为海军带来多种潜在优势。首先,它是唯一能够高分辨率识别大面积渗漏的技术。这可验证并改进地下水和污染物运输模型。它可精确定位值得关注的区域并排除渗漏程度极低或没有渗漏的区域。例如,最近一项 50 英亩的 DTS 研究发现,渗漏发生在不到 5% 的场地面积内。这种高分辨率数据可提高后续调查的成本效益,并让监管机构更加确信该场地的特征已得到充分描述。
ICASSCT 2024 会议的主要目标是推动传感器、信号处理和通信领域各方面的创新。会议遵循广泛的盲审流程,选出最佳论文进行演讲,其中包括专门为推进技术、系统和基础设施而设计的技术论文、教程、研讨会和行业会议。会议旨在从通信和信息理论到使用信号处理技术实现、评估和改进实际通信系统的性能。
检测化学和生物物质,以涉及各种应用方案,例如可穿戴电子设备,智能点(POC)诊断,环境监测等。[1,2]要适当地满足这些新兴要求,理想的生化传感器应具有诸如高灵敏度,长期鲁棒性,快速响应,实时监测能力,出色的选择性,低单位成本,检测下限,较大的动态范围,低功耗等等等特性[3]但是,人类仍然需要进行陡峭的攀登之旅才能实现这些目标。值得注意的是,2019年冠状病毒病的全球大流行(Covid-19)表明,我们的技术储备在满足这种紧急,庞大和多功能的要求方面并没有充分准备,并引起了对生化感测技术的极大关注。迄今为止,包括化学主义的几种主要技术路线,[4,5] plasonic,[6,7]电化学,[8,9]声传感器,[10,11]等。已经开发出来,每个传感器中的每一个都在某些上述方面具有针对各种实际应用方案的特定优点。纳米制造技术的快速开发用于不同材料和各种结构,由于其小特征和主动结构特性,例如高地表到数量,独特的物理特性,独特的物理特性等,戏剧性地增强了这些传感设备的性能。[12–14]
摘要:在电子垃圾日益成为全球关注的时代,可生物降解传感器的开发代表着朝着可持续环境监测迈出的关键一步。由不可生物降解材料制成的传统传感器是电子垃圾日益增多的重要原因。本文探讨了人工智能 (AI) 与可生物降解传感器的集成,这不仅可以减轻电子垃圾对环境的影响,还可以提高环境监测系统的精度、实时决策和效率。虽然这些 AI 增强型传感器提供了有希望的进步,但数据隐私、基础设施成本及其部署对环境的影响等挑战仍然存在。此外,本文还讨论了 AI 伦理和偏见缓解的关键问题,强调在开发 AI 驱动技术时需要透明、包容和跨学科的方法。讨论为 AI 增强型可生物降解传感器的未来可能性提供了见解,包括扩大应用、可生物降解材料的进步以及这些技术的道德部署。该论文强调了跨学科合作的必要性,以充分利用这些创新的潜力,同时确保它们符合可持续性和道德目标。
与从 LiDAR 数据和多视图影像重建相比,倾斜影像重建是大规模城市建模的重要研究问题和经济解决方案。然而,建筑物足迹和立面的部分不可见性、严重的阴影效应以及大范围区域内建筑物高度的极端变化等若干挑战将现有的基于单目影像的建筑物重建研究限制在某些应用场景中,即从近地面影像建模简单的低层建筑物。在本研究中,我们提出了一种新颖的单目遥感影像 3D 建筑物重建方法,解决了上述困难,从而为更复杂的场景提供了一种有吸引力的解决方案。我们设计了一个多任务建筑物重建网络 MTBR-Net,通过四个语义相关任务和三个偏移相关任务来学习倾斜影像的几何属性、3D 建筑物模型的关键组件及其关系。网络输出通过基于先验知识的 3D 模型优化方法进一步集成,以生成最终的 3D 建筑模型。在公共 3D 重建数据集和新发布的数据集上的结果表明,与目前最先进的方法相比,我们的方法将高度估计性能提高了 40% 以上,将分割 F1 分数提高了 2% - 4%。