保留所有权利。未经许可就不允许重复使用。(未经同行评审)是作者/资助者,他已授予Biorxiv的许可,以永久显示预印本。此预印本的版权持有人。http://dx.doi.org/10.1101/816835 doi:Biorxiv Preprint首次在线发布,2019年10月24日;
• 独特的破裂算法,比传统的信号导数更强大 • 用于 EPD 处理的大量高级算法 • 一键式概念,轻松生成算法 • 可扩展平台(单腔或集群工具) • 快速配方配置,实现强大的端点创建 • 高级设备控制 (AEC) / 过程控制 (APC) (wafer2wafer、Run2Run、Lot2Lot、Clean2Clean) • SQL 数据库,方便进行数据比较和解释 • 不同的用户级别 • 再处理功能以验证过程(EPD) • 统计工具 • 灵活的工具远程连接
“自然语言处理,数字人文科学和语料库语言学的学术社区将受益于对彼此领域的更深层次的互动和意识”(Jenset和McGillivray 2017:125,137)
2.9终止这些许可条款和条件的权利,恕不另行通知。如果出现事实,则应根据该当事方的所有事实存在事实,应终止一方终止的原因,该事实不得不期望继续本协议,考虑到个人案件的所有情况并权衡合同双方的利益。对于BST而言,这种原因应特别存在,如果用户犯有罪名违反这些许可条款和条件的规定,或者如果BST无权获得Sublicense第三方软件组件,则不再是软件的一部分。在BST终止的情况下,用户不得有权索取损害赔偿索赔,而BST保留索赔额外损害的权利。
7 8 Andrea Serino* 1,2, , Marcie Bockbrader* 3 , Tommaso Bertoni 1 , Sam Colachis 3p,4c , Marco 9 Solca 2 , Collin Dunlap 3,4 , Kaitie Eipel 3p , Patrick Ganzer 4 , Nick Annetta 4 , Gaurav 10 Sharma 4p,9c , Pavo Orepic 2 , David Friedenberg 4 , Per Sederberg 5 , Nathan Faivre 2,6 , Ali 11 Rezai** 7 , Olaf Blanke** 2,8 12 13 1 MySpace 实验室,临床神经科学系,洛桑大学医院 14 (CHUV),洛桑,瑞士; 2 瑞士日内瓦联邦理工学院 (EPFL) 大脑思维神经修复研究所和中心认知神经科学实验室,生物技术校区;3 美国俄亥俄州哥伦布市俄亥俄州立大学物理医学与康复系;4 美国俄亥俄州哥伦布市巴特尔纪念研究所医疗器械与神经调节系;5 美国弗吉尼亚州夏洛茨维尔市弗吉尼亚大学心理学系;6 格勒诺布尔阿尔卑斯大学、萨瓦大学勃朗峰分校,CNRS,LPNC,38000 格勒诺布尔,法国;7 美国西弗吉尼亚州摩根敦市西弗吉尼亚大学洛克菲勒神经科学研究所;8 瑞士日内瓦大学医院神经病学系;9 美国俄亥俄州代顿市空军研究实验室。 24 25 * 这些作者的贡献相同;** 这些作者共同指导了这项工作。 26 p 工作时的先前隶属关系;c 当前隶属关系 27 28 29 * 这些作者的贡献相同;** 这些作者共同指导了这项工作。 30
摘要 — 本文展示了一种使用垂直自旋转移力矩磁隧道结的新型磁传感器。传感元件呈圆柱形,直径为 50 纳米,据我们所知,是迄今为止报道的最小的磁传感器之一。本文介绍了传感元件和相关信号处理电子设备的工作原理,它们提供与外部磁场成比例的信号。详细介绍了实验结果,并将其与最先进的商用集成磁传感器以及基于磁隧道结的具有可比尺寸的已发布的磁阻传感器进行了比较。所开发的传感器的测量灵敏度为 1.28 V/T,动态范围达到 80 mT。测得的噪声水平为 21.8 µT/√Hz。描述并比较了所提出的传感器的两种不同工作原理,一种基于时间数字转换器,另一种基于脉冲宽度调制信号。这两种方法都只需要标准的微电子元件,适用于将传感元件与其调节电子设备单片集成。需要对传感元件以及调节电子器件进行后续改进,以进一步降低噪声水平。传感元件及其调节电子器件与磁性随机存取存储器制造中已经使用的制造工艺兼容。这为大规模生产开辟了道路,并满足了消费电子、汽车、工业传感、物理实验或医疗设备等各种市场的需求。
摘要 - 本文评估了两个芯片样品和持有(S&H)电压传感器的性能,可用于功率完整性测量,目的是比较硅启用器(SOI)和散装CMOS技术。使用优化的参数和兼容的设备在180 nm 5 V AMS-bulk和XFAB-SOI过程中设计和模拟了两个传感器。分析的基本变量是功耗,泄漏电流,回弹率(SR)和瞬态输出电压,正在处理,电压和温度变化。与散装技术相比,SOI的功耗较低(平均为2.2兆瓦)和泄漏供应电流(在27○C时为9.5 PA),对过程变化的敏感性较高(额外的回转率最高为88%,而在80○C时为39%),对温度变化的弹性更高(在输出Voltage中的6%)和更大的占用区域(6%)和较大的占用区域。SOI传感器旨在制造并用于评估注入的连续波和瞬态干扰以及由于功率分布网络上的内部活动而引起的电压弹性。索引项 - 整合电路,电压传感器,SOI,PVT,功率完整性
摘要 - 在机器人技术的机器学习中,培训数据质量具有至关重要的作用。许多方法都使用利用算法来选择模型最有用的数据点,通常会忽略测量噪声对数据的影响。本文介绍了一种增强模型学习数据集质量的方法,优化了探索和主动传感指标的组合。我们介绍了一种基于高斯工艺的新型探索格拉米亚度量,预测协方差矩阵,优化以探索有关未知模型的知识最大的状态空间区域。这些与主动传感度量(gramian)集成在一起,以减轻测量噪声效应。通过在独轮车和四倍的机器人上进行模拟来证明这种方法的有效性,证实了组合主动感应和探索可以显着提高模型学习中的性能。
摘要 — 本文介绍了一种由辐射无线电力传输供电的无电池蓝牙低功耗 (BLE) 无线传感器节点的设计和特性。作为无线网状网络的一部分,无电池传感器节点经过优化,能够执行物理测量(温度和湿度),并通过无线网络在互联网上共享这些测量数据。它使用 220 µF 的标准电容器作为存储元件,并由专用 RF 源通过辐射无线电力传输进行远程供电。使用 BLE 协议进行主要任务初始化、感测和广播测量数据每项任务仅需要 1.2 mJ 的能量。通过控制 RF 源的辐射功率,可以粗略地控制物理测量的周期性。
儿童互联网使用情况一直很高。Teens spend an average of 4.5 hours per day on their phones, with about a quarter of them spending as much as 5 to 8 hours in front of their screens, every day.近一半的青少年报告说,他们对手机沉迷。青少年通过社交媒体平台以比任何其他小组更高的速度相互联系,报告说,这些平台比任何其他群体都构成了社交生活中更大的一部分,并且在启动后停止技术使用的难度很大。年轻的孩子,例如11-12岁的孩子,可能会在网上花费不太监督的时间,但他们也面临着与年龄较大的儿童相同的年龄 - 不适当的接触风险,而这些暴露会对他们产生重大影响。我们对女孩和社交媒体使用的研究表明,尽管有许多女孩对社交媒体对生活的整体影响的积极看法,但有意义的女孩报告了对他们使用的挑战。这项研究还表明,社交媒体的许多功能,例如算法视频建议,无尽的滚动,通知和自动播放,都可以使这些平台难以停止使用。此外,这些女孩报告说,她们的社交媒体使用会对他们的睡眠和增加的压力造成负面影响。社交媒体公司有意使用操纵性设计功能来在线增加儿童参与度,以便从广告中赚更多的钱。功能诸如无尽的滚动,低摩擦设计以及重复通知(或“ nuding”)之类的功能将青年带回应用程序,并在网上延长注意力和时间。的确,研究表明,像Tiktok这样的流行社交媒体应用程序可为无限的个性化内容提供低摩擦的访问权限,这些内容短暂地引起了孩子和青少年的关注,并引起了强迫性的参与。利润动机应归咎于 - 平台创建这些功能,以促进用户参与并增加广告收入,而不论负面后果如何。最终,这些功能通过损害孩子的隐私,驱使孩子朝着有害和极端内容驱使我们的孩子危害我们的孩子,并在线揭露风险的接触和行为。