摘要:炎症性肠病(IBD)的特征是慢性肠炎,没有治愈和有限的治疗选择,通常具有全身性副作用。在这项研究中,我们开发了一种特定于目标的系统,可以通过设计益生菌大肠杆菌Nissle 1917(ECN)来潜在地处理IBD。我们的模块化系统包括三个组成部分:基于转录因子的传感器(NORR),能够检测炎症生物标志物一氧化氮(NO),1型血素蛋白分泌系统以及由人类抗TNFα纳米型的库组成的治疗货物。尽管敏感性降低,但我们的系统表现出对NO的浓度依赖性反应,成功地分泌了与常用药物adalimumab相当的结合亲和力的功能性纳米型,如酶联免疫吸收测定和体外分析所证实。这个新验证的纳米库库扩展了ECN治疗功能。也可以在ECN中首次表征所采用的分泌系统,可以进一步改编为筛选和净化感兴趣的蛋白质的平台。此外,我们提供了一个数学框架来评估工程益生菌系统中的关键参数,包括相关分子的产生和扩散,细菌定植率和粒子相互作用。这种综合方法扩展了用于基于ECN的疗法的合成生物学工具箱,提供了新颖的零件,电路和炎症热点可调反应的模型。关键字:工程益生菌,IBD,渗透性,E。Coli Nissle 1917(ECN),一氧化氮,TNFα,纳米型■简介
摘要目的:癌细胞系的大量药物基因组学数据的快速积累为药物敏感性预测(DSP)提供了前所未有的机会,这是促进精度肿瘤学的关键先决条件。最近,生成的大语言模型(LLM)表明了自然语言处理领域(NLP)领域的各种任务的性能和概括。然而,药物基因组学数据的结构化格式对DSP中LLM的实用性提出了挑战。因此,这项研究的目的是多重的:适应结构化药物基因组学数据的及时工程,以优化LLM的DSP性能,评估LLM在现实世界DSP方案中的概括,并比较LLM的DSP性能与目前的Science-Science Baselines。方法:我们系统地研究了生成性预训练的变压器(GPT)作为四个公开基准药物基因组学数据集的DSP模型,这些模型由五种癌症组织类型的细胞系和肿瘤学和非综合药物进行分层。本质上,通过四个学习范式评估了GPT的预测格局在DSP任务中的有效性:零射击学习,几乎没有学习,微调和聚类预处理的嵌入。通过实施三个及时的模板(即指令,指导,预定,披肩)并将与药剂基因组相关的特征集成到提示中,为了促进GPT无缝处理结构化的药物基因组学数据,采用了域特异性新颖的及时工程。与最先进的DSP基准相比,GPT主张了卓越的F1性能我们验证了GPT在不同的现实世界DSP方案中的表现:跨组织概括,盲试和药物校园关联的分析以及顶级灵敏/抗性细胞系。此外,我们对GPT进行了比较评估,该评估是针对多个基于变压器的预验证模型和现有的DSP基准的。结果:在五个组织组的药物基因组学数据集上进行的广泛实验表明,微调GPT会产生最佳的DSP性能(28%F1增加,P值= 0.0003),然后群集预处理的GPT嵌入了GPT嵌入(26%F1增加,P-value = 0.0005),很少有gpt(I.但是,在零射击设置中的GPT具有很大的F1间隙,导致表现最差。在迅速工程的范围内,通过直接指导GPT有关DSP任务并诉诸简洁上下文格式(即指令 - 预备)来实现性能提高,从而导致F1性能增长22%;同时,从基因组学和/或分子特征衍生出的药物细胞线及时及格环境将F1得分进一步提高了2%。
摘要 - 监控运动员运动对于提高性能,减轻疲劳并减少受伤的可能性很重要。高级技术,包括计算机视觉和惯性传感器,在对运动特定运动进行分类方面已广泛探索。将自动体育行动标签与运动员监控数据相结合提供了一种有效的方法来增强工作量分析。关于对运动特定运动进行分类的最新研究表明,基于个别运动员的训练和评估方法的趋势,使模型可以捕获每个运动员特有的独特功能。这对于运动员之间技术差异很大的运动特别有益。当前的研究使用受监督的机器学习模型,包括神经网络和支持向量机(SVM),以使用从上下背包惯性测量单元(IMU)传感器中提取的功能来区分跑步表面,即田径轨道,硬砂和软砂。主成分分析(PCA)用于特征选择和降低维度,增强模型效率和解释性。我们的结果表明,与运动员无关的方法相比,运动员依赖的训练方法可大大提高分类性能,从而达到更高的加权平均精度,召回,F1得分和准确性(p <0.05)。
是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审证明)预先印刷此版本的版权持有人于2020年9月14日发布。 https://doi.org/10.1101/2020.09.13.13.20193722 doi:medrxiv preprint
最重要的是,我对全能的真主表示最深切的感谢,他的无限怜悯和无限的恩典在整个旅程中引导了我。我还要对我的主管教授扬·伦德格伦(Jan Lundgren)教授和共同裁员马蒂亚斯·奥尼尔斯(Mattias O'Nils)教授的坚定支持,指导和鼓励。他们的指导一直在我从工程师转变为研究人员的转变中发挥了作用,使我有能力以有意义的方式为社会做出贡献。我对孟加特·奥尔曼(Bengt Oelmann)的审查并提供了宝贵的反馈。我衷心感谢我在该部门的同事们的持续支持,协作精神和表现的行政援助。最后,对我的父母做了无数牺牲以支持我的旅程。您应该得到一切,我很自豪地说您是世界上最好的父母。对我的妻子和两个男孩,他们对我的爱与信仰是我最大的力量。在我们分享的每一刻,我都非常感谢。愿这些记忆是时间的标记,共同度过了良好的时间。
摘要。在无线传感器网络(WSN)中,通常由具有资源限制的节点组成,利用效率的流程对于增强网络寿命以及因此,在超密集和异质环境中的可持续性(例如智能城市)至关重要。特别是平衡在这种动态环境中有效传输数据所需的能量,这对降低数据冗余性的交易构成了重大挑战,这是降低数据冗余性的交易,同时实现可接受的交付率是一个基本的研究主题。通过这种方式,这项工作提出了一种新的能源感知的流行病协议,该协议使用网络能量的当前状态来通过自我调整每个节点转发行为自我调整为渴望或懒惰的局部残留电池来创建动态分布拓扑。模拟的评估证明了其在能耗,输送率和计算负担下的效率与经典八卦协议以及定向协议相比。
最新一代的耦合海洋大气全球气候模型投射了每1°C的每年平均降水量增加1%–3%的全球增长(Douville等,2021)。这种增加取决于对全球平均表面空气温度(每1°C的2%–3%)的强大反应,该反应部分被温室气体和气溶胶对大气辐射加热的快速调整所抵消(Allan等,2020;Fläschner等,2016)。在许多地区都观察到了更激烈但较少的降水事件(Donat等,2019; Giorgi等,2011),并预测了极端降水事件的发生率增加,再加上更长的干燥咒语(Sillmann等,2013; Thackeray等,2013; Thackeray等,2018)。然而,区域降水的投影仍然高度不确定,它们的总方差仍由模型不确定性而不是发射场景或内部气候变异性主导(Douville等,2021; Lehner等,2020)。
摘要 - 锂离子电池在电动汽车中的大规模应用需要细致的电池管理,以确保车辆的安全性和性能。温度在锂离子电池的安全性,性能和寿命中起着重要作用。因此,电池管理系统应及时监控电池的温度(SOT)。由于电动汽车的机载温度传感器有限,大多数电池的SOT必须通过其他测量的信号(例如电流和电压)估算。为此,本文通过用机器学习将基于物理的热模型梳理,开发了一种准确的方法来估计电池的表面温度。使用集团的质量热模型来提供机器学习的电池温度的先验知识。与温度相关的特征(例如内部电阻)实时提取,并将其作为补充输入中馈入机器学习框架,以提高估计的准确性。将卷积神经网络与长期短期记忆神经网络相结合的机器学习模型已与热模型依次集成,以了解模型输出与实际温度值之间的不匹配。已针对实验结果进行了验证,与常规的基于纯热模型和纯数据驱动的方法相比,准确性提高了79.37%和86.24%。
传感器控制器是可编程的,自动的超低功率CPU,具有快速的唤醒功能和非常低的电流传感器读数。大多数构建自动化系统都需要唤醒和执行每秒多次的小任务,启动和关闭能源很容易成为应用程序所花费的总能量的主导因素。一个大型高速MCU系统通常需要大量模块/例程,这些模块/例程在变化从备用状态变为活动模式时会大大增加能源消耗。例如,较大的MCU系统可能需要更高功能的PRCM(功率和时钟模块)系统。为了解决此问题,TI引入了传感器控制器引擎,该引擎可以从备用中唤醒 - 执行任务并通过尽可能多的能量回到备用。本应用程序探索了传感器控制器的多功能性,传感器控制器是CC13X2/4和CC26X2/4无线设备中的超低辅助处理器,重点是构建自动化应用程序。