卫星遥感技术是全球最先进、最广泛的遥感技术之一,它以月、日甚至小时为单位收集数据。世界各地的科学家通过卫星获取信息,结合地面勘测,研究这些图像,从而真正全面、具体地了解地球上发生的重大变化。以这种方式收集图像和定量数据的过程通常被称为“遥感”。这项技术在过去 30 年中不断发展。自 20 世纪 60 年代以来,气象卫星数据一直用于预测天气模式。但自 1972 年第一颗地球观测卫星发射以来,随着先进卫星仪器的发展,许多国家发现太空图像在发展规划和项目中的应用越来越多样化。事实上,卫星遥感已成为资源管理的宝贵工具,尤其是在发展中国家。其应用范围多种多样。例如,卫星数据已用于监测巴西的森林砍伐情况,评估受水分、疾病、昆虫和
纠缠的光结合相互作用的研究一直在增强动量,因为它们在生物成像和感测中的潜在应用。纠缠的光子被预测为线性化非线性光学过程,并向相互作用横截面提供增强的数量级。研究了和表征纠缠增强的生物成像技术的有效性,设计和表征了基于周期性粘液性锂量含锂(PPLT)的连续波(CW),芯片,片上的宽带,宽带纠缠源。This light source achieved fem- tosecond entangled correlation times comparable to classical ultrafast lasers with an unprecedented power of ∼ 100 nW in near-infrared (NIR), which is a crucial first step toward fully integrated, thin-film lithium niobate (TFLN)-based, visible to NIR entangled photon sources.然后将此光源用于随后的光谱/显微镜实验,以系统地研究具有纠缠的显微镜技术的可行性,例如纠缠的两光子吸收(ETPA)显微镜和纠缠的荧光生命测量值。开发了一种新的方法,可以使用静态分辨的米歇尔森干涉仪来测量ETPA的荧光,该方法擅长消除由于单光子的吸收和散射而导致的错误信号。制作了从戊胺6G(R6G)中检测虚拟状态介导的ETPA的仔细实验尝试,并从吲哚羟胺绿(ICG)中提高了ETPA,并发现了ETPA信号,并且发现ETPA信号低于仪器检测极限,并且经常被诸如散射和局部吸收器等单光子效应掩盖。相反,将实验上限放在研究分子的ETPA横截面上,重点是继续改善光源和仪器检测极限。片上悬而未决的荧光寿命成像显微镜(纠缠 - FLIM)也已被确定为新的未来发展焦点。通过原理证明实验证明了该技术的可行性,该实验揭示了各种溶剂中ICG的荧光寿命。使用CW激光器产生的纠缠光子,寿命测量方案达到了50 ps的时间分辨率,最小可测量的寿命为365 ps,可用于区分相应波长范围内的大多数生物学相关的荧光团。该实验是迈向可扩展,高吞吐量,波长 - 多工和芯片上的FLIM或终身测量结果的关键第一步,可用于无标签的健康监测技术。
摘要 本文总结了 Landsat 的政策历史,并研究了其在陆地遥感科学发展、与土地使用相关的实际应用和市场中的地位。特别是,它确定了为遥感陆地数据和信息产品的商业市场奠定基础的关键步骤。本文进一步分析了政府政策与遥感技术发展之间的相互作用。它得出结论,地球观测数据市场发展的主要力量之一是信息技术的创造,包括功能强大的个人计算机、地理信息系统 (GIS) 软件、CD-ROM 和互联网。这些技术和其他技术正在创建将遥感数据纳入更广泛的信息市场所需的基础设施。
摘要:遥感技术克服了地面测量在时间和空间上的限制,增强了大规模生物多样性监测,并可以同时评估多种植物性状。每个个体的全部性状及其随时间的变化都是特定的,可以揭示有关森林群落遗传组成的信息。在空间和时间上连续测量同一物种个体之间的性状变异是监测遗传多样性的关键组成部分,但很难用地面方法实现。如果能够建立光谱和遗传信息之间的充分联系,使用成像光谱的遥感方法可以提供高光谱、空间和时间覆盖,以推进遗传多样性的监测。我们评估了 11 年来从瑞士同一温带森林上空 69 次机载棱镜实验 (APEX) 飞行中获得的欧洲山毛榉单株树的反射光谱。我们获得了 68 棵冠层树的反射光谱,并将这些光谱的差异与 68 个个体中微卫星标记得出的遗传差异关联起来。我们计算了不同时间点、波长区域和波长区域之间相对差异的相关性。高相关性表示光谱遗传相似性高。然后,我们测试了从几天到几年的时间尺度上获得的环境变量对光谱遗传相似性的影响。我们对辐射测量进行了不确定性传播,以提供这些相关性的质量指标。我们观察到遗传相似的个体具有更相似的反射光谱,但这在不同的波长区域和不同的环境变量之间有所不同。受水吸收影响的光谱短波红外区域似乎提供了有关高温下种群遗传结构的信息,而光谱的可见部分和受树冠散射特性影响的近红外区域在较长时间尺度上显示出与遗传结构更一致的模式。在研究光谱带之间的相对差异(最大相关性:0.40)时,遗传相似性与反射光谱相似性的相关性比研究反射数据(最大相关性:0.33)时更容易检测。结合光谱测量的不确定性,基于单个光谱带的分析的光谱遗传相似性提高了 36%,光谱带之间的相对差异提高了 20%。这项研究突出了密集多时相机载成像光谱数据在检测森林群落遗传结构方面的潜力。我们认为,观察到的反射光谱的时间轨迹表明植物对环境变化的反应存在生理和可能的遗传限制。
Park Seismic 提供的服务 Park Seismic 提供灵活、快捷的风力涡轮机场地地震调查完整现场调查和报告服务,范围从最基本的 1-D 分析到完整的 3-D 分析,具体取决于场地条件和预算情况。现场调查可由单独的当地工程公司根据 Park Seismic 提供的说明进行,然后由 Park Seismic 进行后续数据处理、解释和报告。与单站点调查相比,多站点调查可以以更快、更经济的方式进行。有关更多信息,请联系 Choon B. Park 博士(choon@parkseismic.com,电话:347-860-1223),或访问 http://www.parkseismic.com/WindTurbine.html。
Wim H. Bakker Freek D. van der Meer Wim Feringa Gabriel N. Parodi Ambro S. M. Gieske Christine Pohl Ben G. H. Gorte Colin V. Reeves Karl A. Grabmaier Frank J. van Ruitenbeek Chris A. Hecker Ernst M. Schetselaar John A霍恩·克劳斯·坦普利·格里特·胡尼曼·迈克尔·J. C. Weir Lucas L. F. Janssen Eduard Westinga Norman Kerle Tsehaie Woldai
传记:Roland Sauerbrey 于 1981 年获得德国维尔茨堡大学物理学博士学位。在德克萨斯州休斯顿莱斯大学完成博士后研究后,他成为维尔茨堡大学的助理教授。1985 年至 1994 年,他是莱斯大学电气工程系的成员。1994 年,Sauerbrey 博士接受了德国耶拿弗里德里希席勒大学物理学教授的职位。2002 年至 2004 年,他还担任德国物理学会主席。自 2006 年 4 月以来,他一直担任德累斯顿-罗森多夫研究中心的科学主任,同时还担任德累斯顿工业大学的量子光学教授。Sauerbrey 博士的科学工作主要涉及强激光与物质的相互作用以及激光的发展。
摘要:遥感技术克服了地面测量的时间和空间限制,增强了大规模生物多样性监测,并允许同时评估多种植物性状。整个性状集及其随时间的变化对于每个个体都是特定的,可以揭示有关森林群落遗传组成的信息。连续测量同一物种个体在空间和时间上的性状变化是监测遗传多样性的关键组成部分,但很难通过地面方法实现。如果可以建立光谱和遗传信息之间的充分关系,使用成像光谱的遥感方法可以提供高光谱、空间和时间覆盖,以推进遗传多样性的监测。我们评估了 11 年来从瑞士同一温带森林上空 69 次机载棱镜实验 (APEX) 飞行中获得的单个欧洲山毛榉树的反射光谱。我们获得了 68 棵冠层树的反射光谱,并将这些光谱的差异与 68 个个体中微卫星标记的遗传差异相关联。我们计算了不同时间点、波长区域和波长区域之间相对差异的相关性。高相关性表示光谱遗传相似性高。然后,我们测试了从几天到几年的时间尺度上获得的环境变量对光谱遗传相似性的影响。我们对辐射测量进行了不确定性传播,以提供这些相关性的质量指标。我们观察到遗传相似的个体具有更相似的反射光谱,但这在波长区域和环境变量之间有所不同。受水吸收影响的光谱短波红外区域似乎提供了高温下种群遗传结构的信息,而光谱的可见部分和受树冠散射特性影响的近红外区域在较长时间尺度上显示出与遗传结构更一致的模式。在研究光谱带之间的相对差异(最大相关性:0.40)时,遗传相似性与反射光谱相似性的相关性比反射数据(最大相关性:0.33)更容易检测。这项研究强调了密集多时相机载成像光谱数据在检测森林群落遗传结构方面的潜力。结合光谱测量的不确定性,基于单个光谱带的分析的光谱遗传相似性提高了 36%,光谱带之间的相对差异提高了 20%。我们认为,观察到的反射光谱的时间轨迹表明植物对环境变化的反应存在生理和可能的遗传限制。