摘要:III类WRKY转录因子在植物应对多种非生物胁迫和次生代谢中起着至关重要的作用,但WRKY66的进化和功能尚不清楚。本研究对WRKY66同源物进行追溯,发现其经历了基序的获得与丢失以及纯化选择。系统发育分析表明145个WRKY66基因可分为三个主要进化枝(A~C进化枝)。替代率检验表明WRKY66谱系与其他谱系有显著差异。序列分析显示WRKY66同源物具有保守的WRKY和C2HC基序,且平均丰度中关键氨基酸残基的比例更高。AtWRKY66是一个核蛋白,可受盐和脱落酸诱导的转录激活因子。同时,在盐胁迫和脱落酸处理下,由成簇的、规律间隔的、短回文重复序列/CRISPR-相关9(CRISPR/Cas9)系统产生的Atwrky66敲低植物的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性以及种子发芽率均低于野生型(WT)植物,但相对电解质渗漏(REL)较高,表明敲低植物对盐胁迫和脱落酸处理的敏感性增加。此外,RNA-seq和qRT-PCR分析表明,敲低植物中参与应激反应的脱落酸介导的信号通路中的几个调控基因受到显著调控,表现为基因表达更温和。因此,AtWRKY66可能在盐胁迫反应中起正调控作用,可能参与脱落酸介导的信号通路。
摘要:牙源性感染是颌面区域的最常见感染性和炎症性疾病,而病原体鉴定的问题是实际任务,这是对治疗以及诊断方案和标准的永久性过程的一部分。在介绍的研究中,通过细菌学方法研究了13例急性化脓性牙源性牙源性病变患者的化脓性渗出液,并检测到对抗菌剂的敏感性。细菌学研究表明,链球菌属占69.23%的病例。在临床上显着浓度(每1 mL及以上10 5)(链球菌和葡萄球菌)中的致病性微生物具有对四环素和多西环素的抗性,对22.22%的Macrolides具有中等敏感性,在77.78%中具有中等的敏感性。阿莫西林/克拉维酸盐在22.22%的病例和中等延迟中引起有效的生长迟缓 - 在没有抵抗病例的情况下为77.78%。在50.00%的病例中检测到对头孢菌素的敏感性,中等灵敏度 - 38.89%,耐药性 - 11.11%。氟喹诺酮是最有效的 - 在72.22%的情况下,敏感性,中等灵敏度 - 22.22%,耐药性 - 5.56%。最有效的氟喹诺酮是莫西沙星和环丙沙星。
摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
摘要:脱落酸(ABA)是一种重要的植物激素,参与调节植物生长、发育和逆境响应中的多种功能。多种蛋白质参与调控环境胁迫下ABA信号转导机制,其中PYR1/PYL/RCAR家族为ABA受体。本研究利用CRISPR/Cas9基因编辑系统和单个gRNA敲除大豆三个PYL基因:GmPYL17、GmPYL18和GmPYL19。T0代植株基因分型结果显示,gRNA可有效敲除GmPYL17、GmPYL18和GmPYL19基因靶序列,并使其发生不同程度的缺失。一组诱导的等位基因被成功转移到后代。在T2代,我们获得了双重和三重突变的基因型。在种子萌发阶段,CRISPR/Cas9技术制备的GmPYL基因敲除突变体,尤其是gmpyl17/19双突变体对脱落酸的敏感性低于野生型。利用RNA-Seq技术,通过3个生物学重复研究不同处理下萌发幼苗对脱落酸反应相关的差异表达基因。gmpyl17/19-1双突变体种子萌发过程中对脱落酸的敏感性降低,突变株高和分枝数高于野生型。在脱落酸胁迫下,GO富集分析显示一些正向萌发调控因子被激活,降低了脱落酸敏感性,促进了种子萌发。本研究为从分子水平上深入研究脱落酸信号通路及其关键成分的参与提供了理论基础,有助于提高大豆对非生物胁迫的耐受性,同时也有助于育种者调控和提高大豆在不同胁迫条件下的产量和品质。
1使用梯子作为TE缓冲液样品确定与DNA片段有关的所有规格。使用Covaris剪切对照基因组DNA(人类雄性)在TE缓冲液中确定与DNA涂片有关的所有规格。剪切时间为30或240。2分辨率定义为两个峰的一半高度或更好的分离。实际分离性能取决于样本和应用。峰值小于一半高度的峰仍然可以通过系统软件准确地识别。
可再生能源 (RES) 在配电网中的日益普及已将传统电压调节推向极限。为了在这种新环境下开发先进的电压控制技术,需要在输电系统运营商 (TSO) 和配电系统运营商 (DSO) 之间进行充分且实时的协调和通信。本文提出了一种分散的 TSO-DSO 协调方法,用于在 DSO 边界内调度和部署最佳无功功率交换,从而改善 TSO 网络中的电压控制。所提出的方法通过标准化业务用例 (BUC) 实现。通过在国际电工委员会 (IEC) 通用信息模型 (CIM) 标准系列 IEC61970、IEC61968 和 IEC62325 的框架内设计和开发 BUC,解决了 TSO、DSO 和其他利益相关者之间的互操作性。鉴于缺乏现场试点测试,所提出的标准化 BUC 在真实的斯洛文尼亚 TSO 和 DSO 网络上进行了演示。本文介绍的模拟实验有两个方面。一方面,基于标准化 BUC 的所提出的数据交换机制证明了以 CIM 通用电网模型交换标准 (CGMES) 格式在 TSO、DSO 和其他利益相关者(例如重要电网用户 (SGU) 和电表运营商)之间成功交换数据的可行性。另一方面,通过对不同网络拓扑、DG 运行场景和电容器组的大小和位置进行灵敏度和稳健性分析,验证了所提出的分散式 TSO-DSO 协调方法通过管理不同 RES(例如电容器组和不同的分布式发电机 (DG),即水电、光伏 (PV) 和热电联产单元)注入的无功功率来调节高压 (HV) 的能力。模拟结果表明,所提出的方法可以管理分布式发电,使其贡献额外的(正或负)无功功率,以减少电网中的电压偏差,通过减少从 TSO 到 DSO 网络的无功功率流动(反之亦然)来改善 DSO 边界的电能质量,并将高压电压保持在安全值内。不幸的是,对于电容器组来说情况并非如此,所提出的方法管理其注入的无功功率以调节高压电压的能力高度依赖于其大小和位置,需要根据具体情况进行研究。
7 完整报告可在此处获取:https://www.agmanager.info/livestock-meat/meat-demand/meat-demand- research-studies/consumer-sensitivity-pork-prices-comparison。鉴于不同项目所采用的时间段、相关市场覆盖程序和方法存在差异,在比较 2021 年报告和当前报告中的弹性估计值时应谨慎。8 作为相关澄清点,虽然可以定义所有猪肉产品组合(例如里脊肉与培根)、地理定义的市场(例如凤凰城与芝加哥)和时间段(例如 CPI 低于 2.5% 与高于 4.0% 或 2022 年与前一个日历年),但每种组合的结果观察结果不足以自信地估计这些狭义组合的模型。
摘要:基于受体的生物传感器的性能通常受到分析物的扩散,导致不合理的长期测定时间或缺乏特异性限制了由于非特异性结合的噪声而引起的灵敏度。交替的电流(AC)电动物及其对生物传感的影响是一个专门解决此问题的研究领域,可以通过电热效应,电流或电介型(DEP)来改善分析物的传质。因此,由于使用这些技术的提高了传质,因此已经显示出提高灵敏度,并通过数量级降低了测定时间。在具有现实样品基质避免非特异性结合的真实样品中实现高灵敏度至关重要,并且理想情况下,改进的传质应针对目标分析物。在本文中,我们介绍了将生物传感器与DEP相结合的方法,这是AC动力学方法具有最高的选择性。我们得出的结论是,尽管与许多挑战相关联,但对于多种应用,该方法可能是有益的,尤其是如果更多的工作致力于最大程度地减少非特异性绑定,DEP提供了
摘要 —基于亚波长光栅跑道微环谐振器和游标效应,提出并论证了一种优化片上折射率传感器灵敏度和检测限的方法。亚波长光栅波导可以降低光场的结构限制,有利于增强光子与分析物之间的相互作用。通过优化亚波长光栅跑道微环谐振器的参数,传感器的灵敏度可以显著提高到 664 nm/RIU。随后,利用游标效应,设计了一种基于两级联微环的折射率传感器。由于游标效应,重叠峰之间的波长间隔可以有效放大十倍以上,从而获得高性能。结果表明,超高灵敏度为 7061 nm/RIU,检测下限为 1.74 × 10 −5 RIU。该集成装置具有超高灵敏度、低检测限等优点,在环境监测、生物传感器领域具有重要价值。
1 1 Bethel Valley Road,橡树岭国家实验室环境科学部,田纳西州橡树岭 37831,美国,电话:(865) 576-2485,电子邮件:oladosuga@ornl.gov