我们的平台目前已部署在 5 亿多台设备中,适用于所有设备、操作系统、平台和应用程序。通过将系统级遥测数据应用于基于云的大型语言模型 (LLM),AI 虚拟智能传感器平台提供了无与伦比的能力,可以利用来自每个可用数据源的输出数据。这种方法使设备能够更好地理解和响应其环境,使技术更加直观和用户友好。在 Elliptic Labs,我们不仅适应技术的未来,而且还积极塑造它。我们的目标是继续突破情境智能的界限,为全球用户创造更直观、更强大的体验。
摘要 - 湿度测量在日常生活中至关重要,因为它们会影响人类的舒适性,健康,安全性和产品质量。石英晶体微量平衡(QCM)传感器以其快速响应时间和高灵敏度而闻名,由于其能够提供高度线性和准确的测量功能,因此在湿度传感方面具有显着优势。这些传感器特别有价值,因为它们可以实现实时,精确的湿度检测,并最少校准,从而使其非常适合各种应用。这种迷你审查强调了QCM传感器的重要性,重点是集成到复合矩阵中的纳米材料填充剂制成的传感层。典型的QCM传感器表面可以用高导电材料(例如石墨烯,氧化石墨烯(GO)和硼苯)覆盖,它们由于其二维同素异质结构以及碳和硼的独特特性而具有出色的湿度感应能力。本综述始于湿度测量原理和QCM传感器特征的简要概述。然后,它探讨了用于准备QCM传感层的各种材料,讨论了它们在湿度传感器应用方面的优势和缺点。最后,评论介绍了关于逐层自组装的导电聚合物膜的发展的未来观点,基于新型GO的复合QCM湿度传感器和基于硼苯的湿度传感器,说明了它们对多功能复合材料的潜力。
本研究涉及通过反流方法的Tulsi Honey掺杂氧化葡萄岩(TH/CEO 2)的便利合成。使用UV-可见,FTIR,TEM和XRD技术对样品进行表征。使用TH/CEO 2在RH-B(Rhodamine b)染料上实施了光催化研究,并在80分钟后显示了95%的降解,在反应的一阶动力学速率和半寿命(t 1/2)周期为42.58分钟。使用镍网状电极在1 M KCL溶液中分析Th掺杂的CEO 2的氧化还原行为,表明电化学特性(例如电容(CSP),扩散系数(D)和可逆性(ER))的氧化还原行为显着改善。使用环状伏安法检测制备的纳米复合材料来检测Hg +2和Pb +2离子的传感器活性。在这里,Hg +2和Pb +2传感器使用准备好的材料展示了更好的传感特性。生成的TH/CEO 2使用2,2-二苯基丙烯酰氢羟基(DPPH)自由基表现出88%的自由基清除活性,IC50值为339.449 mg/ml。
摘要 - 如今,许多设备正在利用物联网世界,连接并提供了对互联对象和设备的庞大网络中数据和传感器测量的访问。考虑到需要偶尔需要覆盖的巨大通信距离,提出了洛万网络,因为它采用了低功率(LP)和远距离(LORA)协议,以减少设备能耗,同时最大程度地提高通信范围。在数据传输之前,通往云的网关对Lorawan IoT设备进行身份验证。此过程以未加密的加入请求开始。JOIN请求包括消息完整性代码(MIC),这是使用AppKey加密消息的未加密内容的结果,该AppKey既可以牢固地存储在云和IoT设备中。但是,充当中间人(MITM)的恶意参与者可以干扰通信渠道,反向工程麦克风值,并得出appkey。然后,他们可以启动加入请求,该请求被误解为来自合法设备并访问通信渠道。本文介绍了一种新颖的方法,该方法侧重于Appkey的连续再生,因此需要经常对网络中的物联网设备进行重新加入和重新验证。建议的方法可以作为Lorawan网络中的额外的安全层添加,它使用类似于汽车中央锁定系统中使用的键滚动技术,并作为各种Lorawan安装和版本的优化且可扩展的微服务开发。通过评估过程,出现了重大发现,证明了拟议的安全解决方案在减轻重播攻击方面的有效性。该系统成功阻止了服务器被恶意数据包淹没,将其与缺乏所提出机制的系统区分开来。值得注意的是,这项成就是在没有导致通信过程的任何明显延迟的情况下做出的。此外,考虑到当前可访问的计算资源,认为拟议机制生成新AppKey所需的时间范围太短了,无法执行重播攻击。
1.2一些孩子可能会有更多的极端反应,例如盖上或呕吐。由于食物的气味,味道或感觉的厌恶,他们无法控制自己的反应。随着时间的流逝,随着这些负面的经历的增强,只是某些食物的气味或视力会引起儿童的负面反应。1.3儿童大脑非常塑料和适应能力,他们能够轻松学习新事物。当孩子学习一些新事物或经历不同的东西时,他们的大脑就会建立新的联系。他们拥有相同的经验,联系越强,他们的反应与以前的反应不同,因为他们的大脑使用新的连接来处理信息。1.4不处理输入良好的情况也会引起挑剔的饮食,因为孩子可能不会感觉到口腔中某些柔软的质地(好像感觉钝了),因此避免了它们。特别是这些孩子可能更喜欢松脆的食物,不喜欢柔软的食物,或者他们可能会过度填充他们的嘴来尝试“感觉到”食物。1.5超敏或“口服”儿童不喜欢在口腔中经历各种口味和质地感觉。口头防御的儿童通常会吃有限的食物,他/她会吃的食物,也许只有糊状的食物,只有松脆的食物或只有平淡的食物等。它们可能避免耐嚼的食物和混合质地或团块的食物。这些孩子可以轻松地堵塞,并且可以避免在吃叉子或勺子时使用嘴唇(仅使用牙齿)。有些人可能对刷牙或在脸部和嘴唇周围被触摸过过。1.6当孩子吃得非常有限的食物时,因为他们难以食物的味道,味道和觉得这可能是因为他们的大脑正在解释他们从食物中获得的感觉。1.7该计划旨在以积极的方式逐渐减少食物厌恶,目的是使儿童全天消费更多的食物。1.8策略和建议应在家庭和学校环境中引入和实施。1.9步骤1:列出
项目详情:该项目将开发一种用于智能车辆、家电或机器人操纵器的传感表面,该表面结合了本体感受、触觉和多种其他感觉。该表面将采用超材料的形式,其物理特性使其能够出色地控制其表面上的电磁信号流。这种“超皮肤”的优势在于其简单性 - 扩展表面上密集的“超原子”传感器网络将能够仅使用单个电气连接进行本体感受形状确定、损坏检测、附近物体的接近警告以及各种其他形式的感应。如果使用分立传感器和电路(当前的行业标准)制作这种皮肤,那么它可能非常复杂且成本高昂。它将需要许多数据总线线路、信号调节电路和用于过滤的本地处理。此外,它的功耗将使其成本高昂且效率低下。即使将布线内置在结构中,多个传感器也会给原本简单的物体增加很多复杂性。我们的方法截然不同,利用了最近开发的技术,使用超材料及其支持的电磁信号。我们不使用定制电路板或嵌入式线路,而是采用由“元原子”组成的超材料 - 耦合、无源(无动力)电磁谐振器,如开口环。这种 Meta-Skin 只需要在馈电点进行电气连接和处理,每个馈电点都可以处理数百个传感位置。Meta-Skin 的属性源于它能够支持限制在超材料中的电磁表面波(驻波)。我们的创新是利用这些驻波的属性来提供有关表面状况和环境的信息。表面的扭曲、元原子的损坏或附近物体的存在将以可预测的方式改变其驻波,并且可以通过精心设计元原子及其配置来控制这种改变的程度。该项目将以埃克塞特大学现有的工作为基础,并与牛津大学的合作者合作,开发和集成带有这些 Meta-Skin 的传感器,以增加它们可以感知的刺激类型。这将结合超材料、变形结构和其他先进材料的理念,开发用于压力(触摸)、剪切力、温度、湿度等的传感器。该项目的第一年将专注于开发其中一种传感器,然后将其与现有的元皮肤集成。然后将设计更多传感器,并用于创建多感官表面。对于项目的最后阶段,可以选择与牛津大学的合作者合作,将这些元皮肤应用于机器人执行器或智能车辆的组件,并在“真实世界”场景中对其进行测试。该项目将与英国顶尖大学和工业界的合作者合作,将基础物理学推向令人兴奋且具有影响力的现实世界应用。
(1) 根据应用的特定设备隔离标准应用爬电距离和电气间隙要求。注意保持电路板设计的爬电距离和电气间隙,以确保印刷电路板上隔离器的安装垫不会减小此距离。在某些情况下,印刷电路板上的爬电距离和电气间隙会相等。在印刷电路板上插入凹槽、肋条或两者等技术可用于帮助提高这些规格。 (2) 在空气或油中进行测试,以确定隔离屏障的固有浪涌抗扰度。 (3) 视在电荷是由局部放电 (pd) 引起的放电。 (4) 屏障两侧的所有引脚连接在一起,形成一个双端子设备。
虽然共聚焦显微镜是生物医学成像实验室的主力,为图像对比度和质量树立了黄金标准,但逐点获取图像的速度本来就很慢。为了突破这一速度障碍,Photon Force 客户使用 PF32 构建了开创性的多光束共聚焦显微镜架构:用光束阵列取代典型共聚焦显微镜的单光束和针孔,以快速扫描图像平面。返回点与 SPAD 阵列的感光区域对齐,这些区域充当虚拟针孔,可阻挡失焦光。由于每个光束和 SPAD 阵列像素对都完全独立且并行运行,因此最终的系统可以将共聚焦荧光寿命显微镜的速度提高几个数量级。
CYBERDYNE Inc. 是一家面向未来的先锋企业,通过利用融合“人”和“信息物理空间”(HCPS)的 Cybernics(*)来解决社会面临的各种问题,同时创造创新技术、创造新产业和培养人力资源。通过这些挑战,公司促进了创新的良性循环。Cybernics Technology 的一个关键示例是世界上第一个可穿戴机器人 HAL。该技术因其通过 Cybernics Treatment 促进功能再生的有效性和安全性而受到高度评价。该技术已在全球 20 多个国家和地区部署。该集团致力于创建一个安全可靠的社会,让所有世代的人都能提高独立性和自由度,解决生活中的各种问题,包括精神和身体问题,针对有健康、身体功能、认知和心理问题的人以及在社会上工作的人们。https://www.cyberdyne.jp/english/