Bio 252-核酸方法(4 cr。)课程描述为学生提供了生物技术行业就业所需的高级实验室技能。专注于使用基本和专业的实验室设备和技术,例如溶液化学,细胞培养,DNA提取和分析,蛋白质提取和分析。强调实验室安全,文档,质量控制和标准操作程序的使用。讲座3小时。实验室3小时。每周总共6个小时。一般课程目的本课程旨在提供核酸和用于研究DNA的许多技术的介绍。学生将重新引入分子生物学的基本概念,包括DNA结构和功能,以及基因表达的过程和控制。将涵盖DNA科学的基本工具和技术,包括DNA分离和纯化(包括质粒DNA),凝胶电泳,DNA限制/指纹分析和克隆(克隆的转化和筛选)。还将花费很大一部分时间,包括涵盖新的DNA技术,包括聚合酶链反应(包括实时PCR),DNA测序,DNA指纹(使用AFLP和Microsatellite Techniques)和微阵列。学生将使用DNA Sequencer/Analyzer将这些技术集成到小组研究项目中。学生将被介绍到生物信息学领域。这些DNA技术应用于生物技术的不同领域(即取证,医学,环境科学等)将讨论。课程先决条件/准则先决条件:Bio 250和Bio 253,带有“ C”或BOTER或Biotechnology Program Program Plongermiss clightsermiss course Coursemission课程目标,并在完成课程后,学生将能够:
用途:EpiNext™ DNA 文库制备试剂盒 (Illumina) 适用于使用 Illumina 测序仪为下一代测序应用制备 DNA 文库,包括基因组 DNA 测序、ChIP 测序、MeDIP/hMeDIP 测序、亚硫酸盐测序和靶向重测序。该试剂盒的优化方案和组件允许快速构建非条形码 (单重) 和条形码 (多重) DNA 文库,并减少偏差。起始材料和输入量:起始材料可以包括从各种组织或细胞样本中分离的碎片 dsDNA、从 ChIP 反应、MeDIP/hMeDIP 反应或外显子捕获中富集的 dsDNA。DNA 应相对不含 RNA,因为大量的 RNA 会损害末端修复和 dA 尾部,从而降低连接能力。DNA 的输入量可以是 5 ng 到 1 ug。为了获得最佳制备效果,输入量应为 100 ng 到 200 ng。对于无扩增,需要 500 ng 或更多。注意事项:为避免交叉污染,请小心地将样品或溶液移入试管/小瓶中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
用途:EPINEXT™DNA库制备试剂盒(Illumina)适合使用Illumina Sequencer制备下一代测序应用的DNA库,其中包括基因组DNA-SEQ,chip-seq,chip-seq,medip/hmedip-seq,bisulfite-seq,bisulfite-seq,bisulfite-seq,targeted reparted reqe reqecencess。该套件的优化协议和组件允许使用偏置减少的偏差快速构建非标语(单个复合)和条形码(多重)DNA库。起始材料和输入量:起始材料可以包括从各种组织或细胞样品中分离出的碎片dsDNA,从芯片反应,MEDIP/HMEDIP反应或外显子捕获中富集的dsDNA。DNA应该相对不含RNA,因为大的RNA部分会损害末端修复和DA尾巴,从而降低了连接能力。DNA的输入量可以从5 ng到1 ug。为了获得最佳准备,输入量应为100 ng至200 ng。对于无扩增,需要500 ng或更多。预防措施:避免交叉污染,将样品或溶液仔细移液管中。使用气溶胶式移液器尖端,并始终在液体转移之间更改移液器。在整个过程中戴上手套。如果手套与样品之间接触,请立即更换手套。
2015年,从刚果人那里收集了粪便样本,作为该项目的一部分,旨在通过培养物来描述人类的肠道微生物组[1]。从数字09-022获得伦理委员会的批准是从Fédératifde Recherches IFR48(法国马赛)获得的。用1 ml磷酸盐缓冲盐水稀释后,将样品在血液培养基中接种。然后将5毫升绵羊的血和5毫升过滤的瘤胃加入培养瓶中,并在厌氧条件下在37°C下孵育。在第10天,在5%绵羊的血液中分离出马赛-P3295菌株 - 富集哥伦比亚琼脂(BioMérieux,Marcy L'Etoile,France)。菌落平滑,平均直径为0.4至0.8 mm。菌株Marseille-P3295细胞为革兰氏阳性杆菌,过氧化氢酶和氧化酶阴性,平均长度为1.58μm。我们的系统基质辅助解吸电离无法鉴定菌落 - 在微质量范围(Bruker Daltonics,Bremen,Bremen,Germany,Germany,Germany)上筛选的质量质量指标(MALDI-TOF MS)的时间[2]。因此,如前所述[3],使用3130-XL测序仪(Applied Biosciences,Applied Biosciences,Applied Biosciences,France,France)在3130-XL测序仪上使用FD1-RP2引物(Euro-Gentec,Seraing,Belgium)进行16S rRNA基因测序。
“机器人臂角电动机应用”代表了机器人和自动化最前沿的开拓性项目。在当今动态的工业景观中,机器人武器在从制造业到医疗保健的各个领域都起着关键作用。但是,编程和协调这些机器人武器的复杂性经常提出挑战。该项目介绍了专门为机器人武器设计的创新软件应用程序。主要目标是创建一个用户友好的界面,该界面简化了机器人臂的编程和控制,使用户能够轻松地定义,管理和优化操作序列。高级控制算法确保实时监控和协调,增强各种应用程序中的精度和适应性。预期的结果包括一个强大的工具,可以改变机器人武器的操作方式。制造业,物流,医疗保健和农业等行业将受益于提高效率,降低复杂性和改善自动化。随着机器人技术的不断发展,机器人序列的机器人序列应用程序的应用是变革性变化的催化剂,并有望在各个域中更容易访问,多功能和必不可少的机器人臂。
纳米孔测序技术已实现多种应用,用于快速识别和表征生物威胁,包括新兴威胁和/或转基因威胁。已开发出用于超前和移动实验室环境的系统。军事操作员正在接受执行 DNA 和 RNA 测序协议的培训,这将彻底改变现场的生物威胁识别。样品和文库制备方法已得到简化,并正在自动化,供未经实验室培训的操作员使用,生物信息学软件已被设计为在测序仪运行时自动识别生物威胁。一旦生物信息学软件将结果报告给操作员,就会设计额外的软件将结果立即发送到指挥中心,并集成到各种指挥和控制网络和架构中,以实现态势感知和明智的决策。这些系统的另一个好处是它们可以在移动中使用,从而扩大了作战概念 (CONOPS) 的范围。此外,最近的进展使得纳米孔技术可用于非靶向蛋白质识别,这可应用于蛋白质毒素。最终目标是拥有一个单一的纳米孔设备,用于识别基于 DNA 的威胁、基于 RNA 的威胁和毒素,它将作为一个一体化的不可知生物威胁识别器。
常规:添加了通过写入 /DEV…/SYSTEM/ PRESET/LOAD 节点将所有节点设置重置为预设值的功能。节点 /DEV…/SYSTEM/PRESET/BUSY 和 /DEV…/SYSTEM/PRESET/ERROR 允许监控预设状态。 QA 通道:添加了可切换的信号路径:RF(0.5 - 8.5 GHz)路径和 LF(DC - 800 MHz)路径。添加了用于分别在 QA 通道输入和输出的 RF 和 LF 路径之间切换的节点,即 /DEV…/QACHANNELS/n/INPUT/RFLFPATH 和 /DEV…/QACHANNELS/n/OUTPUT/RFLFPATH 。此外,节点 /DEV…/QACHANNELS/n/OUTPUT/RFLFINTERLOCK 允许启用联锁,以便输出的 RF/LF 路径设置始终配置为与输入的路径设置相匹配。 QA 通道:通过删除节点 /DEV…/QACHANNELS/n/MARKERS/m/SOURCE 的非功能性源设置(即“通道 2,序列器触发器输出”和“通道 2,读出完成”选择选项),清理了标记源选择。 QA 通道:修复了一个序列器错误,当使用多个连续的 playZero 命令并带有大量样本数(例如 131056)时,有时会跳过 playZero 命令。 QA 通道:添加了一个可选的同步检查,可确保在执行程序或内部触发器之前所有参与者都已报告其准备就绪状态。可以使用以下节点启用同步检查:/DEV…/QACHANNELS/n/SYNCHRONIZATION/ ENABLE。 QA 通道:修复了光谱延迟节点 /DEV…/QACHANNELS/n/ SPECTROSCOPY/DELAY 在设置为 4 ns 后不接受 0 ns 的错误。 SG 通道:更新了触发输入设置的默认值,以更好地反映典型用法。新的默认值如下:触发级别现在默认为 1 V(校准可能导致值与 1.0 V 略有不同),触发斜率检测现在默认为上升沿。 SG 通道:引入了 /DEV…/SGCHANNELS/n/SYNCHRONIZATION/ENABLE、/DEV…/SYSTEM/ SYNCHRONIZATION/SOURCE 和 /DEV…/SYSTEM/INTERNALTRIGGER/SYNCHRONIZATION/ENABLE 节点,以便即使在存在非确定性数据传输时间的情况下,也能在整个 QCCS 设置中保持波形播放同步。 SG 通道:弃用数字混频器重置功能。 手册:在 AWG 选项卡中添加了有关如何使用同步检查的部分。 手册:在基本波形生成教程中添加了有关如何通过使用适当的中心频率和触发释放时间设置在 LF 路径中实现相位再现性的提示。 LabOne:改进了 LabOne UI 的 SG AWG、QA 生成器和 DIO 选项卡中触发设置的标签,以更清楚地标记触发输入源如何对应于 SG 或 QA 通道的前面板输入。
1. DNA 测序仪和分析仪(3500 基因分析仪)- Applied Bio systems,型号:622-0010 2. 实时聚合酶链式反应机 - Applied Bio systems,型号:Step 1+ 实时 PCR 系统 3. 固体 4 分析仪 - Applied Bio-systems 4. 梯度热循环仪 (PCR) - Bio-Rad,型号:C 1000 5. ELISA 板读数仪(i MARK 微孔板读数仪)- Bio-Rad 6. 凝胶文档系统 - Bio-Rad 7. 快速蛋白质液相色谱纯化 (FPLC) 系统 Akta 纯化器 - GE BOX 900 8. UV-VIS 分光光度计 – Shimadzu,型号:UV-2450 9. 三目倒置显微镜 – Nikon,型号:ELWD0.3/OD 75 10. 台式冷冻离心机 - Thermo Scientific 11. 落地式冷冻离心机 - Beckman coulter 12. 二氧化碳培养箱 - New Brunswick 13. 垂直 -85˚C 深度冷冻机 - New Brunswick 14. 离心机 - Eppendorf,型号:5810 R 15. 寡核苷酸合成仪 Polyplex - Dig lab,型号:PPX019 16. BOD 培养箱 - IKON Instruments 17. 冷冻机(垂直 -20°C)- Vestfrost 18. 冷冻机(垂直 4°C) 19. 卧式冷冻机(2 个) 20. 冷冻机(垂直) 21. 水浴
千足片是将叶子回收到热带生态系统中的土壤中的关键参与者。为了阐明其肠道菌群,我们从波多黎各的不同城市收集了千足虫。在这里,我们的目标是基准哪种方法最适合这个高度复杂的千足型微生物组的元基因组脱脂。我们用牛津纳米孔技术(ONT)奴才序列对肠道DNA进行了测序,然后使用Megan-LR,Kraken2蛋白模式,Kraken2核苷酸模式,GraphMap和MiniMAP2分析了数据,以对这些较长的ONT进行分类。从我们的两个样本中,我们分别获得了87,110和99,749个ONT读数。kraken2核苷酸模式与门和类分类级别的所有其他方法相比,读取最多的读取性,对两个样本中的读取中的75%进行了分类,其他方法未能分配足够的读数,以在类似物稀有曲线中产生分类曲线,以表明它们需要对这些进行分类的较大分类,以使这些曲线分为稀有曲线,以完全进行分类以进行分类。社区的各种方法是多种多样的,所有方法将两个样本中的20-50门分类。使用的读取和门类似于五个基准测试的读数和门的明显重叠。我们的结果表明,Kraken2核苷酸模式是应用这个高度复杂群落的宏基因组学脱脂的最合适工具。
MGI Tech推出了一系列基于DNBSEQ技术的新NGS设备。对于不同类型的测序文库而言,这些序列据报道这些序列仪的准确性相似或精确度略低。但是,根据T7 Sequencer的情况,它们每天更具成本效益,并且每天达到约6 TB的数据。这些原因为MGI测序仪在基因组学领域中广泛使用铺平了道路,因此鼓励开发可以分析此类数据的软件。MGI序列器输出带有不同读取标题和文件命名的大型FastQ文件,而不是Illumina输出。单端的配对末端或正向读取(R1)的反向读取(R2)的末端是包含样本索引(i7和i5)和唯一分子标识符(UMI)的读取条形码。这些索引用于删除数据,即将读取分配给相应的样本。MGI Tech已将SplitBarcode工具1发布给Demultiplex MGI FastQ。但是,该工具无法识别数据中的UMIS,也没有解决不同标头和文件命名格式的问题,这些格式可以由Illumina基于Illumina的工具所需的问题。此外,它要求用户知道在读取条形码中找到索引的前期,并且不支持同一运行中的多个库。Mgikit用Rust编程语言写。可以在工具网页上获得综合文档和用户指南https:// sagc- bioinformatics.github.io/mgikit/。在此申请注释中,我们提供了一个软件套件的Mgikit,以消除MGI FASTQ数据,检测条形码模板并生成可以通过mgikikit-multiqc插件转换为html报告的反复材料和质量报告工具[1]。