本研究是试图确定印度中部恰蒂斯加尔邦Bilaspur Smart City附近的热电厂附近的森林种植库存的碳库存和碳固存潜力。非破坏性抽样方法用于估计地上生物量和地下生物量。为每棵单独的树测量乳房高度(DBH)处的高度和直径。制作了同类方程,以估计树种的碳储存。在国家热电厂周围记录了35种树种,半径为30公里,在四个不同的方向(东,西,北部和南方)。结果表明,ficus benghalensis是发现碳储存量最大的物种,其次是ficus eligiosa。根据本研究,开发的异形模型可以进一步估算国家热力公司发电厂及其周围森林植被中的碳库存,以及其他热带落叶林。
基于树种的碳储量估计在尼日利亚很少见。因此,我们使用系统采样技术使用非破坏性方法研究了单个树木的能力。使用Borgu部门的预先分类的Landsat-Oli/TC图像铺设了一百个圆图。绘图中心已找到并用全球定位系统接收器标记。将12.61 m半径(500 m 2)的主要图细分为5.64 m半径(100 m 2)的子图。在主要地块中测量了乳房高度(dbh)≥10cm的树木,而在子图中考虑了≥5cm dbh的树。进行了物种识别和测量。核心样品。核心样品在70°C下干燥至恒定重量。然后将木材密度计算为烤箱干燥的重量/新鲜体积。地上碳上的碳确定为50%生物量。使用核心采样器和土壤螺旋钻以600个样品在两个深度的样品图内,在样品图内的三个点上对对角样品收集土壤样品。样品被气干,磨碎并通过2 mm的筛子筛分。核心采样器和环用于测量散装密度。在105°C下将样品干燥24小时。土壤有机物是通过Fe 2确定的,因此4滴定了酸 - 二足的消化,并计算了有机碳浓度。使用涉及木材密度,DBH和Tree-Height和Anova的异形方程分析树碳数据。 遇到了16个家庭中的35种树种。树碳数据。遇到了16个家庭中的35种树种。凹室微果是最常发生的(18.8%)。树种的丰富度,多样性和重要性值指数分别为2.852、4.779和41.76±35.41。Vitellaria Paradoxa和Afzelia Africana是唯一发现的脆弱物种。带有较大DBH的树木隔离了更多的碳。因此,平均DBH为111.4±0.00 cm的Adansonia digitata隔离了最高量(2.8吨/公顷),这与其他数量明显不同(p <.05)。Securidaca longipendiculata的碳量最少(0.001吨/公顷)。与此同时,土壤碳在Acacia kosiensis,V。Paradoxa和Grewia Mollis主导的地块中较高,分别为0.006758吨/ha,平均0.073±0.0021 ton/ha的bon-bon-Stock和car--bon-stock和co-2,分别为0.271±0.010吨/ha的co 2。
抽象的土壤肥力和生产力受到剥削和退化过程的严重影响。这些威胁,再加上人口增长和气候变化,迫使我们寻找创新的农业生态解决方案。益生元是一种土壤生物刺激剂,用于增强土壤条件和植物生长,并可能在碳(C)固存中起作用。与未经处理的土壤或对照(SP)相比,评估了两种商业益生元(分别称为SPK和SPN)(分别称为SPK和SPN)对用Zea Mays L.栽培的农业土壤的影响进行了评估。在两个收获日期进行分析:应用益生元后三周(D1)和十个星期(D2)。测量了植物生长参数和土壤特征,侧重于土壤有机物,土壤细菌和真菌群落,并植物根菌根。关于物理化学参数,两种益生元治疗都会增加土壤电导率,阳离子交换能力和可溶性磷(P),同时降低了硝酸盐。同时,在D2处,SPN处理在升高特定的阳离子矿物质(例如钙(CA)和硼(B))方面是不同的。在微生物水平上,每种益生元都诱导了本地细菌和真菌群落的丰度和多样性的独特转移,这在D2处很明显。这些生物标志物被鉴定为(a)腐生型,(b)植物生长促进性细菌和真菌,(c)内植物细菌以及(d)内生和共生微生物群。该结果反映在处理过的土壤中,尤其是SPN中的肾小球素含量和霉菌化率的增加。同时通过每种益生元治疗招募了特定的微生物分类群,例如来自Spk的Spk的真菌,以及来自Spk的真菌以及Chitinophaga,Neo-os-secet and Bacillie and bacormob and bacorli secors and carlobacter,sphingobium and Massilia,以及来自Spk的真菌和schizothecium carpinicola来自SPN的真菌的细节。我们观察到这些作用导致植物生物量的增加(SPK和SPN的芽分别为19%和22.8%,根分别增加了47.8%和35.7%的干重),并促进了土壤C含量的增加(有机C含量增加了8.4%,总C增加了8.9%),尤其是SPN治疗。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。鉴于这些发现,施用后十周的使用益生元不仅通过改善土壤特征并塑造其天然微生物群落来增加植物的生长,而且还表明了增强C隔离的潜力。
气候变化(CC)被认为是对粮食安全的主要威胁之一,环境可持续性,包括二十一世纪的人类健康发展(Christensen等,2007; Seager等,2007)。政府间气候变化小组(IPCC)得出结论,气候在过去的一个世纪发生了变化,在过去的一个世纪中,人类活动对这些变化产生了影响,预计气候将在未来继续变化(IPCC,2007年)。即使在保护方案下,未来的气候变化也可能包括在某些地区(Christensen等,2007; Seager等,2007)的全球平均温度(高于2°C -4°C)的进一步升高,并在某些地区有显着干燥,并且在极端的极端潮流,热潮和热浪中的频率和严重程度增加(ipccccccccccc,2007年),2007年,2007年。
在植物和土壤中的盈余大气CO 2的必须沉没,在这种情况下,甘蔗种植在利用CO 2方面起着关键作用,因为它是C 4植物在光合作用过程中具有很高的利用CO 2的植物。 另一种干预措施可能是通过改变养分管理实践来增强CO 2的捕获,从而通过提高甘蔗的氮效率来增强叶绿素的合成。 不同的处理组合物增强了捕获更多CO 2的光合作用。 因此,甘蔗作物和根际土壤在大气的脱碳中充当重要的碳沉水量,最终降低了碳水平并导致全球冷却。 土壤特性和碳储存:结果表明,由于对控制的不同有机修订,治疗中的土壤物理特性和化学特性在处理之间存在显着差异。 分析了土壤有机碳(SOC),范围为0.47至0.67%。 不同的有机修订治疗对土壤的密度和孔隙率有很大影响,并显着改善了土壤碳储存。 植物碳储存:不同甘蔗植物部分中的碳库存,包括根,芽和叶子。 甘蔗生物量中的总碳存储,包括地上部分和地下部分,即 根,在不同的治疗中有显着差异。 关键字:甘蔗;碳存储;气候变化;光合作用;碳固存。 1。 甘蔗主要用于糖生产。必须沉没,在这种情况下,甘蔗种植在利用CO 2方面起着关键作用,因为它是C 4植物在光合作用过程中具有很高的利用CO 2的植物。另一种干预措施可能是通过改变养分管理实践来增强CO 2的捕获,从而通过提高甘蔗的氮效率来增强叶绿素的合成。不同的处理组合物增强了捕获更多CO 2的光合作用。因此,甘蔗作物和根际土壤在大气的脱碳中充当重要的碳沉水量,最终降低了碳水平并导致全球冷却。土壤特性和碳储存:结果表明,由于对控制的不同有机修订,治疗中的土壤物理特性和化学特性在处理之间存在显着差异。土壤有机碳(SOC),范围为0.47至0.67%。不同的有机修订治疗对土壤的密度和孔隙率有很大影响,并显着改善了土壤碳储存。植物碳储存:不同甘蔗植物部分中的碳库存,包括根,芽和叶子。甘蔗生物量中的总碳存储,包括地上部分和地下部分,即根,在不同的治疗中有显着差异。关键字:甘蔗;碳存储;气候变化;光合作用;碳固存。1。甘蔗主要用于糖生产。在T 6下发现了最高的碳库存量(877.08 kg ha -1),其次是T 2中的根(668.74 kg ha -1),而在t 2中,碳库存(422.77 kg ha -1)在t 5中(422.77 kg ha -1)中的碳(422.77 kg ha -1)在t 5中显示了30.41%和107.58%的碳含量更多,而摄入量则更多的碳含量与摄影相比。与射击相比存储。储存在地上部分(叶和茎)中的碳的平均值明显高于地下植物部分(621.73 kg ha -1)(根)(根)(根)。结果表明,甘蔗种植实践对碳的隔离具有有希望的效果,从而增强了气候变化影响的缓解。引言甘蔗是一种多年生草,在90个国家 /地区的商业上耕种,全球广泛的面积约为26×10 6公顷,全球收获18.3亿个调子[1]。它也用于牲畜喂养和产生乙醇作为生物燃料[2]。然而,甘蔗作物是C4植物将碳螯合到植物和土壤中的能力至关重要。气候变化的主要原因是温室气体(GHG),包括二氧化碳(CO 2),主要是从人类不可持续的活动中散发出来的[3]。某些干预措施有助于增强CO 2营养作为政府间的气候变化[4]报道说,由于温室气体的排放和全球变暖,地球表面的温度预计将在本世纪末升高到5.8°C,因此,为了稳定全球温度,为了稳定全球温度,必须稳定人类学的co 2,在众多的范围内,在这种情况下,这是众多的含量,众多的含量是众多的,这是众多的含糖,并有糖2,是弥漫的,是在弥漫的范围内,占地2,是弥漫的,众所周知的是,这是众多的,众所周知的是,这是众多的,众所周知的是,这是众多的,众所周知的是,这是众多的,众所周知的是,这是众多的,众多的含量是众多的。自从大气中使用CO 2在使用CO 2方面发挥了关键作用,这是一种C 4工厂,在光合作用过程中使用太阳辐射的效率很高,并且消耗了更多的CO 2。
摘要:在土地利用模式中,森林土壤是全球C周期的重要组成部分,它存储了大量有机碳(OC)。比较各种土地使用系统中的碳储存,以评估土壤中的有机碳。为此,该研究是对三种重要土地使用系统中土壤c库存的估计进行的。芒果果园,在比哈尔邦穆扎法尔布尔地区种植和休耕地。为了评估各种土壤特性,使用土壤核心切割器从三个土壤深度(0-15、15-30和30-45厘米)收集土壤样品。在芒果树的不同年龄中,有机碳的价值分别比10岁和20岁的树木分别获得了25岁的芒果果园。土壤pH在整个土地使用系统中有所不同,其中,在耕地上记录了更高的价值,随后是耕地。然而,芒果果园土壤中的pH值比其他土地使用系统的pH值较低,这可能是由于增加了芒果果园的垃圾叶。在表面土壤中,所有微量营养素的浓度较高。研究通过研究的信息对土壤有机碳库存的影响对于最佳土地管理实践,打击气候变化并增强生态恢复至关重要。
2025年2月10日明尼苏达州立法机关主题:HF 9,第2节 - 碳捕获和隔离国家政策亲爱的众议院能源与财务委员会成员:美国石油研究所(API)赞赏这一机会,以分享我们对HF 9,第2节的支持,这将在Minnesota中建立支持和开发碳捕获和发育的国家政策。API代表了美国天然气和石油行业的所有细分市场,该领域支持了将近1,100万的美国工作岗位,并得到了数百万美国人的基层运动的支持。我们的大约600名成员生产,处理和分发大多数国家能源,并参与API Enerval Excellence,这正在通过促进新技术和透明的报告来加速环境和安全进度。API的许多成员都是碳捕获,利用和存储(CCUS)项目和技术的投资者,运营商和开发人员。API支持通过鼓励创新的合理政策来推动经济发展和温室气体(GHG)排放的努力,以及CCUS等可行排放技术的发展和部署。我们的行业致力于促进较低的碳未来,同时提供负担得起的可靠的能源以满足全球增长的需求,而低碳解决方案对于实现这一目标至关重要。气候专家全球认识到开发和部署CCU的必要性。国际能源机构表示,CCUS技术将在减少批量排放的全球动力中发挥关键作用。1在国际气候变化小组考虑的潜在脱碳途径中,有665千兆二氧化碳二氧化碳的中位数需要累积捕获和储存,并在2100年,2或近9千次捕获或捕获或删除,并平均每年捕获或删除并储存。3此外,CCUS是脱碳,钢,化学,炼油和发电等难以浸入的行业的关键工具。CCUS项目还可以在明尼苏达州创造经济机会并支持创造就业机会。建立强大的CCUS行业可能会通过建设,运营和维护