本文提出了一种直接而有趣的方法,用于设计宽带宽度,轻巧和可调电磁波(EMW)吸收材料。通过燃烧实验从“法老的蛇”中汲取灵感,生物质碳源和蔗糖用于制造Fe/Fe 3 O 4 @porous Carbon(PC)复合材料。随后,应用高温钙化以增强材料的Mi Crowave吸收特性。准备好的复合材料表现出令人印象深刻的6.62 GHz有效带宽,并且在匹配的厚度为2.2 mm的情况下,具有-51.54 dB的出色吸收能力。此外,通过调整磁性颗粒的含量并控制复合材料的厚度,可以实现C,X和KU频段的全面覆盖范围。出色的性能表明,合成的Fe/Fe 3 O 4 @pc多孔材料对电磁波吸收的应用具有重要潜力。它为获取吸收宽带吸收材料的新颖,直接且具有成本效益的方法打开了。
serpentine互连(Serpentines)具有不同曲率程度的蛇形(Serpentines),通常设计用于吸收变形并保护脆弱的活性组件影响的设备。弯曲曲线较小的蛇纹石使用传统理论进行了很好的建模,但这高估了弯曲较大的蛇形的可拉伸性(例如,相对误差超过90%)。在这里提出的是一种新型的理论模型,其中非buck蛇蛇纹石的特征是大型曲面束。得出分析溶液,并据报道系统的实验和数值模拟来验证准确性并研究几何依赖性。发现(i)无量纲的几何参数调节了蛇纹石的兼容力学,(ii)有一定的弧形角可以产生异常的可伸缩性(即归一化的可伸缩性小于统一性),(iii)可以通过两个数量级和五个数量级来增强灵活性和可伸缩性。这项工作是一种构造具有较大曲率的最佳蛇纹石丝带的新方法。
• Neal Tanner,汉森医疗公司(商业化)3 • David Camarillo,汉森医疗公司(机器人导管)5 • Howie Choset,卡内基梅隆大学(蛇形机器人)6 • Pierre Dupont,波士顿儿童医院,HMS(连续机器人)8 • Koji Ikuta,名古屋大学(机器人导管)9 • Joseph Madsen,医学博士,哈佛医学院儿童医院(临床视角)11 • Mohsen Mahvash,波士顿儿童医院,HMS(连续机器人)12 • Rajni Patel,西安大略大学(机器人导管)14 • Cameron Riviere,卡内基梅隆大学(蠕虫机器人)16 • Nabil Simaan,哥伦比亚大学(NOTES)17 • Russell Taylor,约翰霍普金斯大学(蛇形机器人)19 • Robert Webster,范德堡大学(连续机器人)20 •杨光中,帝国理工学院(蛇机器人)23
