serpentine互连(Serpentines)具有不同曲率程度的蛇形(Serpentines),通常设计用于吸收变形并保护脆弱的活性组件影响的设备。弯曲曲线较小的蛇纹石使用传统理论进行了很好的建模,但这高估了弯曲较大的蛇形的可拉伸性(例如,相对误差超过90%)。在这里提出的是一种新型的理论模型,其中非buck蛇蛇纹石的特征是大型曲面束。得出分析溶液,并据报道系统的实验和数值模拟来验证准确性并研究几何依赖性。发现(i)无量纲的几何参数调节了蛇纹石的兼容力学,(ii)有一定的弧形角可以产生异常的可伸缩性(即归一化的可伸缩性小于统一性),(iii)可以通过两个数量级和五个数量级来增强灵活性和可伸缩性。这项工作是一种构造具有较大曲率的最佳蛇纹石丝带的新方法。
由薄膜组成的小型电源(如全固态微电池)已引起人们的关注,以确保可穿戴微电子和物联网 (IoT) 设备的自主性[1-3]。然而,这些刚性元件实现的机械变形非常有限[4-8],使它们不适合某些应用,如软电子、生物医学贴片,技术挑战在于设计出具有高电化学性能和先进机械性能的储能装置,以防止裂纹引起的变形和随后的电接触损失。因此,已经提出了几种开发柔性微电池的方法来,例如纸状结构[9-12]、海绵/多孔结构[13-15]和纺织电池[16-20]。由于这些设计的可扩展能力仍然很差,据报道,其他配置可以增加微电池的可扩展性,包括纤维形[21]、3D 多孔海绵[22、23]、折纸[24]、波浪形[25]、拱形电极[26]、蜂窝结构[27]和由螺旋弹簧形成的蛇形[28]。为了防止在拉伸应变下出现开裂问题,蛇形金属互连体被用于在薄膜电极之间建立可拉伸的电接触[29]。然而,对于这种桥岛电池设计,大部分表面需要用于连接,只有 28% 的基底被活性材料占据。
抽象的热量存储(TES)是存储和调度能量并剃须电动负载的有前途的解决方案,从而降低了HVAC系统的运行成本。我们使用与空调集成的相位变换材料(PCM)提出了TES系统的结果。所提出的系统使用有机PCM(四烷)封装在压缩的扩展的自然石墨泡沫中,称为相变复合材料。石墨泡沫封装了PCM,消除了对昂贵的存储容器的需求,降低安装成本并提供更高的导热率,从而导致电荷/放电速度更快。两个蛇形,多通电路,作为热源和水槽运行,往返相变复合材料的热量。这两个电路嵌入该材料的多个平板中。“电荷”电路包含直接耦合到蒸气压缩系统的制冷剂,并且“排放”电路从气流中去除热量,并通过水 - 甘油液液体偶联将其释放到PCM复合材料中。这种配置允许多种操作模式,具体取决于热量存储模块的充电状态,建筑物空调负载以及当前的电力和需求费。此灵活操作允许无需具有可变容量制冷系统的可变空气容量控制。,我们开发了21 kW-hr(6 RT-HR)原型TES系统,并加上商用空调器,以表征组件和系统级的性能。