摘要。为了稳定印度尼西亚的葱的供应和价格,Java以外举行了一项生产开发计划。庞蒂亚纳克城是西卡利曼丹葱生产开发的领域之一。每年对Pontianak City的需求水平增加。这表明人均消费量增加。Pontianak的葱问题是高价波动。这不仅发生在消费者层面,而且发生在生产者层面。使用的方法是描述性的定性,可以用FSCN框架分析葱供应链,同时用来用运营效率和价格效率来衡量供应链绩效的描述性定量。使用的采样技术是目的抽样和雪球采样。结果表明,葱已经有一个明确的目标市场,链结构由2个营销渠道组成。供应链参与者由农民,收藏家,分销商,代理商和零售商组成。发生的合同协议是非正式的,而参与者之间的关系结构良好。供应链绩效显示营销渠道1和2尚未有效,而且价格尚未正确传输。
飞机充当高空排放载体,将大量放射性和化学活性物质运送到全球广大地区。这些物质引起的净全球变暖效应占全球气候变化的 3.5%,这是由于人类活动排放造成的 [ 1 ]。虽然二氧化碳 ( CO 2 ) 排放通常被认为是航空引起气候变化的主要因素,但它们只占航空净气候影响的三分之一。其余三分之二的影响归因于反应性非二氧化碳排放,主要是氮氧化物 ( NO x )、水蒸气 ( H 2 O ) 和颗粒物 ( PM )。这些排放物通过化学和微物理过程与周围空气相互作用,导致辐射活性物质的产生和消耗,从而扰乱大气的净能量平衡(例如,NO x 引起的臭氧生成、通过 H 2 O 和 PM 排放产生的凝结尾迹(凝结尾)等)。由于非 CO 2 飞机排放的反应性,气候响应因背景大气的状态(即其化学成分和气象条件)以及排放物释放的时间和年份而异。这意味着航空气候影响在时空上敏感,即在不同时间和/或地点释放的相同排放物可能导致非常不同的大气影响。飞机排放物的扩散发生在很长的距离和时间尺度上,排放物夹带在飞机排气羽流中,在其长达 12 小时的生命周期内扩散数百公里 [ 2 , 3 ]。羽流中存在的排放化学物质浓度升高会导致额外的非线性化学(气相和非均相)和微物理处理,由于固有假设排放瞬时扩散 (ID),这通常不在全球化学模型中得到考虑。
Bravyi、Gosset 和 König(Science 2018)、Bene Watts 等人(STOC 2019)、Coudron、Stark 和 Vidick(QIP 2019)以及 Le Gall(CCC 2019)最近的研究表明,浅(即小深度)量子电路和经典电路的计算能力存在无条件分离:量子电路可以以恒定深度求解经典电路需要对数深度才能求解的计算问题。利用量子纠错,Bravyi、Gosset、König 和 Tomamichel(Nature Physics 2020)进一步证明,即使量子电路受到局部随机噪声的影响,类似的分离仍然存在。在本文中,我们考虑了在计算结束时任何恒定部分的量子比特(例如,巨大的量子比特块)都可能被任意破坏的情况。即使在这个极具挑战性的环境中,我们也朝着建立量子优势迈出了第一步:我们证明存在一个计算问题,可以通过量子电路以恒定深度解决,但即使解决该问题的任何大子问题也需要对数深度和有界扇入经典电路。这为量子浅电路的计算能力提供了另一个令人信服的证据。为了展示我们的结果,我们考虑了扩展图上的图状态采样问题(之前的研究也使用过)。我们利用扩展图对顶点损坏的“鲁棒性”来表明,对于小深度经典电路来说很难解决的子问题仍然可以从损坏的量子电路的输出中提取出来。
量子计算的一个核心问题是确定量子计算相对于经典计算的优势来源。尽管在经典计算机上模拟量子动力学被认为在最坏情况下需要指数级的开销,但已知在几种特殊情况下存在有效的模拟。人们普遍认为,这些易于模拟的情况以及任何尚未发现的情况都可以通过随机选择量子电路来避免。我们证明了这种直觉是错误的,因为我们证明了某些恒定深度的二维随机电路系列可以在经典计算机上近似模拟,时间与量子比特和门的数量成线性关系,即使相同的系列能够进行通用量子计算,并且在最坏情况下很难精确模拟(在标准硬度假设下)。虽然我们的证明适用于特定的随机电路系列,但我们用数字证明,更一般的足够浅的恒定深度二维随机电路系列的典型实例也可以有效模拟。我们提出了两种经典模拟算法。一种是基于首先模拟空间局部区域,然后通过恢复图将它们“缝合”在一起。另一种方法是将二维模拟问题简化为模拟一种由交替进行的随机局部幺正和弱测量组成的一维动力学问题。类似的过程最近成为研究的焦点,研究发现,随着测量强度的变化,动力学通常会经历从低纠缠(且模拟效率高)状态到高纠缠(且模拟效率低)状态的相变。通过从随机量子电路到经典统计力学模型的映射,我们给出了分析证据,证明随着电路结构参数(如局部希尔伯特空间维数和电路深度)的变化,我们的两种算法都会发生类似的计算相变,此外,对应于足够浅的随机量子电路的有效一维动力学属于模拟效率范围。针对深度为 3 的“砖砌”架构(精确模拟难度较大)实施后一种算法,我们发现笔记本电脑可以在 409 × 409 网格上模拟典型实例,总变化距离误差小于 0.01,每个样本大约需要一分钟,这是之前已知的电路模拟算法无法完成的任务。数值结果支持我们的分析证据,即该算法是渐近有效的。
蒙特克莱尔州立大学数字共享中心免费向您提供本论文,供您开放访问。蒙特克莱尔州立大学数字共享中心的授权管理员已接受本论文,将其纳入论文、学位论文和毕业设计中。如需更多信息,请联系 digitalcommons@montclair.edu。
Bravyi、Gosset 和 König(Science 2018)、Bene Watts 等人(STOC 2019)、Coudron、Stark 和 Vidick(QIP 2019)以及 Le Gall(CCC 2019)最近的研究表明,浅(即小深度)量子电路和经典电路的计算能力存在无条件分离:量子电路可以以恒定深度求解经典电路需要对数深度才能求解的计算问题。利用量子纠错,Bravyi、Gosset、König 和 Tomamichel(Nature Physics 2020)进一步证明,即使量子电路受到局部随机噪声的影响,类似的分离仍然存在。在本文中,我们考虑了在计算结束时任何恒定部分的量子比特(例如,巨大的量子比特块)都可能被任意破坏的情况。即使在这个极具挑战性的环境中,我们也朝着建立量子优势迈出了第一步:我们证明存在一个计算问题,可以通过量子电路以恒定深度解决,但即使解决该问题的任何大子问题也需要对数深度和有界扇入经典电路。这为量子浅电路的计算能力提供了另一个令人信服的证据。为了展示我们的结果,我们考虑了扩展图上的图状态采样问题(之前的研究也使用过)。我们利用扩展图对顶点损坏的“鲁棒性”来表明,对于小深度经典电路来说很难解决的子问题仍然可以从损坏的量子电路的输出中提取出来。
本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,也不是巴特尔纪念研究所,或其任何雇员,对任何信息,设备,产物或程序披露或代表其使用的任何法律责任或责任都没有任何法律责任或责任,或者对其使用的准确性,完整性或有用性都不会侵犯私人权利。以此处参考任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或Battelle Memorial Institute的认可,建议或赞成。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
SSLNG(小型液化天然气)适用于具有以下特征或特征组合的市场:需求量低于 1 MTPA(百万吨/年)或约 130 MMbtu/d(百万英热单位/天)、需求中心分散、缺乏交付基础设施、需求多变、实施时间短和/或资金受限。SSLNG 项目对基础设施的要求可以通过陆上和/或海上方案来满足,例如带有小型陆上再气化设备的 FSU(浮动存储装置)、FSRU、LNGC(液化天然气运输船)和 ISO(国际标准化组织多式联运)集装箱,无论是在船上还是在驳船上。浮动解决方案通常比陆上解决方案更经济,对资金紧张的经济体具有吸引力。但是,在实施这些方案时,存储容量可能是一个制约因素,因为它们受到船舶大小或甲板空间的限制。
大约一半的世界人口居住在海岸线 200 公里以内,到 2025 年,这个数字可能会翻一番。90% 的世界贸易是通过海上进行的,而其中 75% 的贸易要经过至少一个狭窄且脆弱的海峡。绝大多数海上交通线 [SLOC]、咽喉要道、港口和其他基础设施都位于 CSW,如果暴露在恐怖分子、海盗或有组织犯罪分子等非法分子手中,可能会造成严重破坏。同时,沿海地区特别容易受到自然灾害的侵袭,需要复杂的救援和危机管理工作。因此,显然必须特别关注 CSW 环境。它仍然是多种法律、政治和经济利益的共同界面,也具有社会和制度影响。
大约一半的世界人口居住在海岸线 200 公里以内,到 2025 年,这一数字可能会翻一番。世界上 90% 的贸易是海上贸易,而其中 75% 的贸易要经过至少一个狭窄且脆弱的海峡。绝大多数海上交通线 [SLOC]、咽喉要道、港口和其他基础设施都位于 CSW,如果暴露在恐怖分子、海盗或有组织犯罪分子等非法行为者的手中,可能会造成严重破坏。与此同时,沿海地区特别容易受到自然灾害的侵袭,需要复杂的救援和危机管理工作。因此,显然必须特别关注 CSW 环境。它仍然是多种法律、政治和经济利益的共同界面,同时也保留了社会和制度含义。