碳青霉烯是广谱抗生素,在治疗由革兰氏阴性细菌引起的严重感染中起主要作用。碳青霉烯型肠杆菌科的全球传播正在成为一个公共卫生问题(Jamal等,2020)。肠杆菌科中碳青霉烯耐药性的升高主要是由于获得了碳青霉烯 - 氢化酶(Carbapenemases)(Tilahun等,2021)。编码碳青霉酶的基因可以掺入细菌染色体中,但主要位于移动元素上,例如在细菌菌株和物种之间可转移的质粒或转座子(San Millan,2018年)。因此,临床暴发通常很复杂,涉及克隆,质粒或转座子的基因传播的各种因素(Brehony等,2019)。碳青霉素型OXA-48首次出现在2000年代中期,此后在许多欧洲国家和世界各地都发现了(Hidalgo等,2019)。在法国,它是产生甲状腺素酶的肠杆菌科(CPE)中最常见的酶(Emeraud等,2020)。BLA OXA-48基因被认为源自环境Shewanella菌株的染色体(Tacão等,2018)。它在物种之间的快速传播是由于其在转座子中筑巢(TN 1999),该转座主要由含有/M型质粒携带(Shankar等,2020)。控制医院病房中的暴发是必要的,以限制多药耐药细菌的传播。CPE对患者的定殖可以干扰适当的护理。fmt是CPE定殖也可能影响癌症患者化学疗法的开始,因为它与接受诱导化疗的患者的存活率较低有关(Ballo等,2019)。因此,已经实施了一种恢复健康的肠道菌群并消除CPE储层(例如粪便菌群移植(FMT))的策略。
1 60710 Bobbali Sandhya General (Un-reserved) INSPIRE 2 60850 Balendu Singh General (Un-reserved) UGC 3 60868 Sanju SC UGC 4 60925 Aratrika Halder General (Un-reserved) Project Assistant 5 6095 Abdulla OBC-Only 6 60970 Muneeza Shakeel General (Un-reserved) UGC 7 61020 Jaksani Bhavya General (Un-reserved) INSPIRE 8 61028 Dhruba Jyoti Deka General (Un-reserved) CSIR 9 61037 Thadakamalla Ravi Teja EWS (New Surrey 1940) ma General (Un-reserved) Industry Sponsored 11 61097 Ritu Kumari General (Un-reserved) UGC 12 61102 Jannatul Islam General (Un-reserved) INSPIRE 13 61131 Aswale Kiran Kishanrao EWS (New category) Project Assistant 14 OBC-On-16 ly) Project Assistant 15 61163 Shivam Shailesh Kumar Joshi General (Un-reserved) INSPIRE 16 61179 Mohammad Saif Ali OBC (Non-Creamy Layer Only) Project Assistant 17 61187 Vuyyala Bhuvaneshwari General (Un-reserved 18 PNS 1619) served) INSPIRE 19 61232 Ramesh Vislavath ST NFST 20 61234 Battula Shravani General (Un-reserved) INSPIRE 21 61343 Dharavath Ravi ST UGC 22 61439 Amar Bhimrao Mane General (Un-Reserved CSIR Chaten 6149) Un-reserved) UGC 24 61505 Abhay Shankar EWS (New category) Project Assistant 25 61508 Nandini Rajesh Mahankar General (Un-reserved) UGC 26 61511 Avdhesh Kumar SC UGC 27 61515 Parit Suhas Tadalya General (UGC 2016) General (Un-reserved) Project Assistant 29 61537 Nagtilak Mahesh Yuvraj EWS (New category) CSIR 30 61570 Shahnaz Begum OBC (Non-Creamy Layer Only) Project Assistant 31 61590 Ayazoddin Aunoddin- Kazi General Project Assistant (Unreserved)
Engie在新加坡沿海的Semakau Island上开设了一个孢子(意味着可持续的区域)平台。与Nanyang Technology University的能源研究所和Schneider Electric合作,该网站的目的是成为一个生活实验室,由Engie及其合作伙伴使用,以测试包括绿色氢在内的不同可再生技术,提供培训,并证明100%可再生的微电网是可能的。这个平台增强了Engie的目的,即加速向碳中性经济的过渡,这是该集团研发计划的关键里程碑。在本地“可再生能源整合演示者”(REID)倡议下实现,该项目由最先进的多流体微电网溶液组成,该解决方案产生了650 kW的电力。Engie的Reids-Spore是一个与新加坡大陆和能源自给自足的平台,其可再生能源和存储解决方案都集成在一起。它拥有新加坡最大的风力涡轮机,以及用于电力和活动性的全链链。此孢子平台将能够解决偏远地区访问绿色能源的问题。它将成为Engie Group使用的生活实验室,以在真实的热带条件下测试和开发各种低碳解决方案,并在更大范围内准备其部署。向前迈进,它可以作为行业和专业人员学习这些新技术的学习中心。每年由Engie在研发方面投资了1.9亿欧元,重点是可再生能源的研究。Semakau项目将是一系列研发测试床中的第一个,该测试床将由Engie在东南亚设立。Shankar Krishnamoorthy说:“这个Reids-Spore平台是Engie领导的能源过渡的核心。这是一个明显的证明,表明我们如何通过更智能,更绿,更易于获取的网格解决方案加速我们的能量过渡,并证明了可再生和自我足够的能源系统的相关性,能够满足世界各地的电力需求。”
1 66503 Patil Gautam Shankar将军(不保留)UGC 2 66677 Abdul Malik Areekkadan OBC(仅非奶程层) Musaddique General(未保留)CSIR 6 66876 PALACHARA SAI PRASANNA总(未保留)项目助理7 66878 Silari Mohana Krishna将军(未保留)DST-INSPIRE 8 66885 Jagriti Mandal Mandal General(Un-Revered)UGC 9 66691-Durke durke durke tarkand-durke tarever(Un-Becorder) 66919 P Sravani General (Un-reserved) Project Assistant 11 66981 Shaik Parveen General (Un-reserved) DST-INSPIRE 12 67095 Bathula Maheswari General (Un-reserved) DST-INSPIRE 13 67147 Kshirsagar Switi Dattatraya General (Un-reserved) Project Assistant 14 67262 Antony Peter Raj A OBC (Non-Creamy Layer Only) Project Assistant 15 67266 Goparaju Rakesh OBC (Non-Creamy Layer Only) Project Assistant 16 67304 Priti Kumari OBC (Non-Creamy Layer Only) Project Assistant 17 67338 Kothuri Pranay SC Project Assistant 18 67363 Mathangi Sandeep SC Project Assistant 19 67405 Ravula Shivakumar OBC (Non-Creamy Layer Only) Project助理20 67464 Shanigarapu Varshitha obc(仅非冰淇淋层)项目助理21 67499 Banavath Shireesha将军(未保留的)DST-Inspire 22 67550 Raval Devraj Prakashandra Prakashandra(无保留)项目助理23 67571 OJA JOACHYARAYALAYALAYALAYALAYALAYALUE ERJITHAR JOACHYALUE ERJINE 7. OBC (Non-Creamy Layer Only) Project Assistant 25 67722 M Shivudu OBC (Non-Creamy Layer Only) Project Assistant 26 67897 Kallurkar Kailas Vishwanath General (Un-reserved) Project Assistant 27 67938 Yugender Raju L SC Sr. Technical Officer (2) 28 68017 Patekar Rohan Rajkumar General (Un-reserved) DST-INSPIRE
阿尔茨海默氏病(AD)是一种神经退行性疾病,其特征是记忆力和其他认知功能的前期下降,最终导致痴呆症。根据2019年世界阿尔茨海默氏症的报告,据估计,目前有5000万人患有AD和相关疾病的人,由于人口越来越老化,预计到2050年,这一数字预计将增加到1.5亿。AD是由Alois Alzheimer在1907年描述的,他将广告与大脑中的组织病理学标志相关联:老年斑块和神经纤维缠结(NFTS)。仅在1980年之后才发现斑块主要由淀粉样蛋白β肽的凝集组成(Aβ)(Glenner and Wong 1984),而神经纤维缠结的主要组成部分是错误折叠的tau蛋白(TAU)(tau)(grundke-iq bal et a e e eT al。1986)。 In 1992, Hardy and Higgins (Hardy and Higgins 1992 ) formulated the so-called amyloid cascade hypothesis for the progression of AD: “the deposition of A β , the main component of the plaques, is the causative agent of Alzheimer's pathol- ogy and the neurofibrillary tangles, cell loss, vascular damage, and dementia follow as a direct result of这个沉积”。 随后,这一假设经过了多年的修订:尽管老年斑块与AD相关,但它们的存在与疾病的严重程度并不严格相关。 高水平的可溶性Aβ与认知降低的存在和程度更好地相关。 的确,弥漫性淀粉样蛋白斑块通常存在于认知完整的老年人的大脑中。 类似地,已经证明β单体缺乏神经毒性(Shankar等人 2002)。1986)。In 1992, Hardy and Higgins (Hardy and Higgins 1992 ) formulated the so-called amyloid cascade hypothesis for the progression of AD: “the deposition of A β , the main component of the plaques, is the causative agent of Alzheimer's pathol- ogy and the neurofibrillary tangles, cell loss, vascular damage, and dementia follow as a direct result of这个沉积”。随后,这一假设经过了多年的修订:尽管老年斑块与AD相关,但它们的存在与疾病的严重程度并不严格相关。高水平的可溶性Aβ与认知降低的存在和程度更好地相关。的确,弥漫性淀粉样蛋白斑块通常存在于认知完整的老年人的大脑中。类似地,已经证明β单体缺乏神经毒性(Shankar等人2002)。2002)。一些作者(例如,参见Haass和Selkoe 2007)推翻了传统观点,并声称β的大骨料实际上可能是惰性的,甚至可以保护健康的神经元。2008),实际上被认为是神经保护作用(Giuffrida等人2009; Zou等。此外,实验数据表明,淀粉样蛋白级联假说无法对AD的演变提供完全令人满意的描述,因为β和Tau似乎以协同的方式起作用以引起细胞死亡(例如,参见Ittner和Götz,2011年; Ricciarelli 2011; Ricciarelli and Ricciarelli and ricciarelli and ricciarelli and rricciarelli and ricciarelli and rricciarelli and ricciarelli and 2017)。在这些结果的基础上,已经假定在AD进程中,“Aβ是触发因素,而Tau是子弹”(Bloom 2014)。因此,尽管β和tau目前仍然是AD治疗的主要治疗靶标(但到目前为止缺乏有效的疗法),但我们将在Sect中看到。2最近的文献表明,两种蛋白质之间的相互作用对于疾病的发展至关重要,必须考虑到不应分别针对两种蛋白质的新疗法的发展。我们提到的是Bertsch等。(2021b)讨论当前的医学文献。数学模型是计算机模拟的基础,该模拟是在体内和体外研究中有效补充的硅研究中所谓的。在Carbonell等人中可以找到有关2018年现有数学模型的详尽历史概述。(2018)。在对宏观建模的最新贡献中,我们提到(Bertsch等人。2020; Raj等。2020,2021a; Fornari等。2019,2020; Franchi等。2020; Goriely等。2020; Kevrekidis等。2021;汤普森等。2020,2021; Weickenmeier等。2019)及其参考。Bertsch等人讨论了几种数学模型,它们的困难,利弊。(2021b),作者提出了一个高度灵活的数学模型,旨在考虑
H 指数是一种广泛用于评估科学家声誉的研究指标。它是一个衡量出版物影响力的数字指标(Hirsch,2005 年)。该值通过取至少被引用“h”次的出版物的“h”个数来确定。h 指数越高,科学家的出版物影响力就越大。表 1 显示了 6 位科学家的出版物概况,他们都在生物分子科学的实验驱动研究领域从事学术工作。这些科学家的出版物和引用统计数据是从 2023 年 4 月的 Scopus 数据库中获得的。概况 1-5 属于五位著名的获奖科学家,他们因突破性的实验研究而获得了“化学”或“生理学和医学”类别的诺贝尔奖和/或“生命科学突破奖”(参见表 1 中的姓名列表)。这两个奖项都享有盛誉,并因突破性的实验工作而颁发。这几个奖项的获奖者分别是罗伯特·S·兰格(生物医学工程领域的多产发明家)、迈克尔·霍顿(疫苗研发领域的开拓者)、卡塔琳·卡里科(RNA 疗法领域的先驱)、詹妮弗·A·杜德纳(CRISPR 技术先驱)和尚卡尔·巴拉苏布拉马尼安(DNA 测序领域的创新者)。他们的 H 指数从 51 到 237 不等。为简便起见,我将他们统称为杰出科学家。名单上的最后一位科学家,我将称他为科学家 X,也是一位生物分子科学家,H 指数为 64。与杰出科学家不同,科学家 X 并未获得国际认可,也没有获得任何重大科学奖项。奇怪的是,科学家 X 出现在科睿唯安的高被引研究人员数据库中。此外,这位科学家每年的平均引用量超过了杰出科学家(两位除外)的平均引用量。一个在实验领域没有杰出记录的科学家怎么可能比获奖科学家获得更多的引用呢?这个问题的答案,正如我将在这里揭示的,是由于平庸的出版物产出,而不是任何形式的实验性新颖性或创新。
西红柿是蛋白质、矿物质、维生素和必需氨基酸最廉价、最容易获取的储存库(Stephen et al., 2014),含有丰富的抗氧化剂和生物活性化合物,如酚类、黄酮类、β-胡萝卜素和番茄红素,可作为对抗病原体的内源性防御机制(Simova-Stoilova et al., 2006; Bhowong et al., 2009; Pinela et al., 2012)。成熟西红柿中含有的番茄红素是一种抗氧化剂,可以抵御致癌成分。类胡萝卜素番茄红素是最重要的抗氧化剂之一,与降低多种癌症和心脏病的风险有关(Adeniyi and Ademoyegun, 2012)。研究发现,与使用传统肥料种植的番茄相比,有机种植的番茄对营养成分有显著影响 (Shankar 等人,2012)。多项研究表明,有机农业可以改善水果和蔬菜的营养特性 (Luthria 等人,2010)。相关研究表明,与传统种植的番茄汤相比,有机番茄汁含有更多的酚类物质和亲水性抗氧化剂 (Vallverdu 等人,2012)。有机肥料的使用在确保生产的可持续性方面发挥着重要作用,可以保护当前和后代的原始供应,同时提供高质量和更长的保质期 (Rembia ł kowska,2007)。向土壤中添加有机肥可以增强微生物活性,提高其保存肥料的能力,最终提高肥力和肥料利用率 (Nanwai 等人,1998)。大量可用的有机物质,例如农家肥、家禽粪便和泥炭肥料,应被视为替代且经济的肥料来源。此外,有机肥料可以作为土壤中微生物的能量来源,从而改善土壤成分和植物生长。为了减少天然岩石肥料对环境的不良影响,以及由于番茄果实的营养价值而导致消费者对番茄果实的需求不断增加,科学家和种植者纷纷开发满足延长保质期要求的方法。本研究旨在评估形态生理生化特性、有机无机营养源的影响,并确定保质期最好的番茄品种。
撰稿人:德鲁·亚当斯(Drew Adams),阿什什·阿格拉瓦尔(Ashish Agrawal),特洛伊·安东尼(Troy Anthony),维卡斯·阿罗拉(Vikas Arora),贾根·阿特拉(Jagan Athraya),戴维·奥斯丁(David Austin),托马斯·巴里(Thomas Baby),弗拉基米尔·巴里尔Chidambaran,Deba Chatterjee,Shasank Chavan,Tim Chien,Gregg Christman,Bernard Clouse,Maria Colgan,Carol Colrain,Nelson Corcoran,Michael Coulter,Jonathan Creighton,Judith Creighton,Judith D'Addmo ,比尔·哈贝克(Bill Habeck),米尔·汉克(Min-Hank Ho),李·亨(Lijie Heng),比尔·霍达克(Bill Hodak),Yong Hu,Pat Huey,Praveen Kumar Tupati Jaganath,Sanket Jain,Prakash Jashnani,Caroline Johnston,Shantanu Joshi,Shantanu Joshi Surinder Kumar, Paul Lane, Adam Lee, Allison Lee, Jaebock Lee, Sue Lee, Teck Hua Lee, Yunrui Li , Ilya Listvinski, Bryn Llewellyn, Rich Long, Barb Lundhild, Neil Macnaughton, Vineet Marwah, Susan Mavris, Bob McGuirk, Joseph Meeks, Mughees Minhas, Sheila Moore, Valarie Moore, Gopal Mulagund, Charles Murray, Kevin Neel, Sue Pelski, Raymond Pfau, Gregory Pongracz, Vivek Raja, Ashish Ray, Bert Rich, Kathy Rich, Andy Rivenes, Scott Rotondo, Vivian Schupmann, Venkat Senaptai, Shrikanth Shankar, Prashanth Shanthaveerappa, Cathy Shea, Susan Shepard, Kam Shergill, Mike Skarpelos, Sachin Sonawane, James Spiller, Suresh Sridharan, Jim Stenoish, Janet Stern, Rich Strohm, Roy Swonger, Kamal Tbeileh, Juan Tellez, Ravi Thammaiah, Lawrence To, Tomohiro Ueda, Randy Urbano, Badhri Varanasi, Nick Wagner, Steve Wertheimer, Patrick Wheeler, Doug Williams, James威廉姆斯、安德鲁·维特科夫斯基、丹尼尔·黄、余海玲
皇家精神病医生学院(RCPsych,2016)定义了智障人士(PWID)的特征,其特征是智力和适应性功能的重大损害,并在18岁之前发作。大约1% - 英国人口的2%拥有ID(英格兰公共卫生[PHE],2016年)。PWID更有可能具有心理和身体健康的合并症和早死亡(Heslop等,2013; Shankar等,2020)。大约有20%的PWID具有易于身体,心理和神经发育的合并症的遗传障碍(de Villiers&Porteous,2012; Palmer等,2014)。特殊的遗传疾病与癫痫发作,自我伤害行为和情感/精神病疾病有关(Kidd等,2014; Soni等,2008)。遗传疾病的诊断不足,易于基于症状的药物使用,例如管理具有挑战性的行为(Wolfe等,2017,2018)。识别与身体和精神障碍相关的遗传状况可以减少健康不平等和过早死亡,并帮助PWID理解和管理其状况(Adlington等,2019)。它也可能是使用药物(例如药物基因组学)提供个性化和精确治疗的前护士(Perera等,2022)。然而,遗传研究并不是英国PWID和合并症的植物实践(De Villiers&Porteous,2012年)。nsula研究E x在疾病和癫痫病(Pixie)中的基因组分层。这是一个遗传研究项目(2017 - 2020年),探讨了与合并症癫痫识别成人PWID遗传变异的可行性。这项可行性的前瞻性队列研究旨在招募成人PWID进行遗传,表观遗传学和转录组分析,以识别可用于促进进一步研究或个性化医学方法以优化治疗和护理的分子标记。次要目的包括评估招聘率,数据集合方法和结果指标以及评估进一步遗传研究所需的资源。这项研究是通过将基因抽样的研究焦点与改善临床实践相结合的,是针对PWID设计的独特之处。符合条件的参与者在临床上过期表明生物化学,以确保达到主要的
1。sh。Anand Katoch 20560 Rajasthan LSA DDG(乡村1)2。sh。Ashok Kumar 20620 US West LSA DDG(乡村2)/技术3。sh。Ashok Kumar Jain 20194孟买LSA DDG(技术)4。sh。Deo Shankar 21059 Bihar LSA总监(乡村)5。sh。Himanshu Gupta 60068在西LSA Adet(合规)6。sh。Kamal Kumar Agarwal 20882 TEC DDG(量子技术)7。sh。Kamal Kumar Jangid 21400 Mumbai LSA ADG(技术)8。sh。M. Murali Krishna 20027 Odisha LSA附加DGT 9.sh。Navneet Chouhan 20690 NCA-T DDG(TS&PR)10。Poonam Kumari女士60117 TEC ADET(QT)11。sh。Pravin Kumar Singh 21488 Estt。,Dot HQ ADG(E&C-II)12。sh。Rajeev Sharma 107001 Punjab LSA董事(合规)13。sh。Rajesh 21476 Assam LSA Adet(乡村)14。sh。RAM RAJ YADAV 21140 BIHAR LSA总监(农村)15。sh。S.S.S.Galgali 20320 Karnataka LSA DDG(安全)16。sh。Sandeep Bhardwaj 20677东北LSA DDG州协调(内加兰)17。sh。Shashi Shekhar Pandey 21341 NCA-T导演(PR)18。sh。Sunil Kumar Ranjan 21049 Karnataka LSA总监(技术)19。sh。Surya Prakash 20801 Bihar LSA DDG(安全)20。sh。Tarun Choudhary 79029 WMO(总部)高级副总监GR。A21。sh。Thaduri Naveen 21410 Assam LSA ADG(合规性)22。sh。sh。sh。Utkarsh Verma 60098。chouksey 60114个人,点adet 24。 Kumar Sharma 21095总监(Echnology)25。 sh。 Kumar Shubhendu 00901728 NCA-T助理。 董事(TS&PR)chouksey 60114个人,点adet 24。Kumar Sharma 21095总监(Echnology)25。sh。Kumar Shubhendu 00901728 NCA-T助理。董事(TS&PR)