California ISO Readiness Notes Title: Sample Shapefile Submission Walkthrough Expected Production Date: Tentatively scheduled for April 9, 2025 Project Associated: Hybrid Resource 2C – Resource Interconnection Management System (RIMS) _____________________________________________________________________________________ Current Process: Users who have a new or currently onboarding resources with solar and/or wind components submit their wind or solar site information through excel位于新的资源实施网页上的表格。
心脏图像的分割是许多患者特定计算管道的可变组成部分,但其对模拟结果的影响仍未得到充分了解。探索赛车变异性影响的障碍是建立心室统计形状模型的技术挑战。在这项研究中,我们通过创建一个统一的形状模型(包括心外膜和eCardium),改善了以前的形状分析。我们在Shapeworks中测试了四种技术,以生成心室形状模型:标准,多体,混合,混合多域和地球距离。使用所有11个分割的多域和混合多域生成了形状模型,而Geodesic距离方法使用四个分段的子集生成了形状模型。每个形状模型在分段变异性的空间依赖性特征上,包括壁厚,环直径和基础截断。虽然三种方法中的每一种都有好处,但混合多域方法为最精确的形状模型提供了最少的点,并且在大多数应用中可能最有用。
摘要:通常认为开放壳分子石墨烯片段的反应被认为是不希望的分解过程,因为它们导致诸如π-磁性等所需特征的丧失。氧化二聚二聚体表明,这些转化是通过在单个步骤中形成多个键和环制造复杂结构的合成结构的希望。在这里,我们探讨了使用Phena-lenyyl的这种“不希望”反应来构建应变并提供非平面多环芳烃的可行性。为此,我们设计并合成了一个双烯基单元通过双苯基骨架链接的Biradical系统。设计促进了分子内级联反应对螺旋扭曲的鞍形产物,其中一个反应中的关键转换(环锁和环形融合)在一个反应中。通过单晶X射线衍射分析证实了最终的绿吡就产物的负曲率,该植物诱导的曲率通过分辨率通过分辨率的映异构体验证,该螺旋扭转验证了螺旋扭曲,这些向映异构体显示圆形极化的发光和高构型稳定性。
形状通常旨在满足结构的适当状态,并在物理世界中提供特定的功能。不幸的是,大多数现有的生成模型主要是基于几何或视觉合理性,而无视物理或结构约束。为了补救这一点,我们提出了一种新颖的方法,旨在赋予深层生成模型的物理推理。特别是我们引入了一个损失和学习框架,该框架促进了生成形状的两个关键特征:它们的连通性和身体稳定性。前者确保每个产生的形状由单个连接的组件组成,而后者则在受重力时促进该形状的稳定性。我们提出的身体损失是完全不同的,我们证明了它们在端到端学习中的使用。至关重要的是,我们可以证明可以实现此类物理目标,而无需牺牲模型的表达能力和生成结果的可变性。我们通过与状态的深层生成模型,我们所提出的方法的效用和效率进行了广泛的比较,同时避免了训练时可能昂贵的可分化物理模拟。
摘要 - 在本文中,我们提出了一种使用机器人臂控制弹性可变形物体形状的一般统一跟踪方法。我们的方法是通过在对象周围形成晶格,将对象与晶格结合,并跟踪和宣誓晶格而不是对象的宣誓。这使我们的方法完全控制了3D空间中任何一般形式的弹性变形对象的变形(线性,薄,体积)。此外,它将方法的运行时复杂性与对象的几何复杂性相分解。我们的方法基于可行的(ARAP)变形模型。它不需要已知对象的机械参数,并且可以通过大变形将对象驱动到所需的形状。我们方法的输入是对象表面的静止形状的点云,并且在每个帧中由3D摄像头捕获的点云。总的来说,我们的方法比现有方法更广泛地适用。我们通过多种形状和材料(纸,橡胶,塑料,泡沫)的弹性变形物体进行了许多实验来验证方法的效率。实验视频可在项目网站:https://网站上找到。Google。com/view/tracking-servoing-apphack。
双叶机械主动脉瓣产生的非生理性流动模式与瓣膜置换术后的血栓栓塞密切相关。研究不同瓣叶形状如何影响此类瓣膜的流场特性有助于优化瓣叶设计,以改善血流动力学性能并减少术后并发症。本研究利用临床CT影像数据创建了真实的主动脉根部硅胶模型,建立了体外脉动流系统来模拟周期性血流。采用粒子图像测速技术捕捉直瓣叶和弯瓣叶双叶机械主动脉瓣下游周期性流场,分析瓣叶形状对速度分布、涡流动力学、粘性切应力(VSS)和雷诺切应力(RSS)的影响。结果表明弯曲瓣叶减少了对主动脉窦的冲击,减轻了高速度造成的内皮细胞损伤。弯曲瓣叶设计还能增加有效流通面积,防止血液停滞,降低凝血因子的局部浓度,从而降低血栓形成的风险。直瓣和弯瓣的最大VSS分别为1.93 N/m 2 和1.87 N/m 2 ,而RSS分别达到152 N/m 2 和118 N/m 2 。弯曲瓣叶可最大限度地减少湍流切应力对血细胞的影响,减少血小板活化并降低血栓栓塞的发生率。优化瓣叶曲率为增强双叶机械主动脉瓣的血流动力学性能提供了一种有希望的途径。弯曲设计也可能更适合老年患者或心脏射血能力降低的患者,从而改善手术效果和康复。
涡轮叶片运行过程中最常见的缺陷之一是叶尖磨损,这会导致叶片报废。增材制造 (AM) 可以通过激光材料沉积 (LMD,也称为直接能量沉积,DED) 工艺进行修复,从而避免成本高昂的整个叶片更换。由于该应用与工业相关,因此关于 LMD 工艺所用的确切沉积策略和工艺参数的信息非常有限。本研究中使用的叶片几何形状的特点是轮廓横截面在叶片高度上的变化。此外,轮廓围绕其骨架线中心旋转,这称为扭曲。此外,轮廓沿其肌腱线向前缘移动,这称为前扫。首先,确定一组合适的工艺参数,通过这些参数可以制造无孔隙和无裂纹的 IN718 基本探头。为了将这些参数转移到涡轮叶片上,研究了各种工艺策略,这些策略既考虑了敏感的叶片几何形状,也考虑了所用生产系统的运动学。这些策略包括轮廓和舱口轨道的调整、合适的飞入和飞出策略的设计,以及悬垂生产的措施。通过将修复后的叶片与其目标几何形状与光学测量进行比较,可以评估工艺后的形状精度。总之,所用的三维构建策略能够稳定地再现扭曲和前掠,并实现足够的加工余量。因此,所开发的工艺代表了复杂叶片几何形状的叶尖损伤近净形修复的基本解决方案,可应用于其他叶片几何形状。
我们的结果表明,已经存在的CD4 T细胞加速了抗体反应,并提高了B细胞适应新病毒变体的能力。同时,现有的抗体可以阻止血凝素的某些部位,从而重塑免疫系统的靶向方式,即免疫瘤模式。每种疫苗颗粒孔的含量有多少也影响了抗体可以重塑B细胞反应的程度。记忆-B细胞也更喜欢快速产生抗体。这意味着在注射位点局部产生的抗体对B细胞反应的影响比已经在血液中循环的抗体更大。最后,
摘要现有文献通常将有关创新设计的研究与实施和使用分开,忽略了选择的作用 - 组织如何选择要实施哪些创新。尽管学者提出了选择新技术的科学方法,但研究这些方法实际上是在决策中如何采用的。本研究通过研究组织如何决定要实施哪些创新以及选择过程如何影响其设计和使用来解决这一差距。借鉴了一项为期两年的民族志研究,该研究探讨了13对二对企业家公司和卫生系统委员会如何试行基于AI的医学诊断创新。委员会由对AI有两极分化的成员组成,形成了反映这些观点的联盟。主导联盟从事“过程操纵”,从战略上改变了试点过程,以实现自我利益的结果,同时保持严格的外观。对AI范围的飞行员热情测试基本用途,确保成功的联盟,而怀疑的委员会对高级用途进行了测试,希望失败。这种操纵限制了企业家倡导其创新并展示市场差异的能力。本文强调了过程操作的动态及其对AI创新开发和使用的影响。
俄罗斯军队新出现的咄咄逼人的男子气概,在性暴力的猖獗中得到了残酷的体现。联合国乌克兰问题调查委员会发布了令人震惊的报告,报告称,性暴力“在枪口威胁下,极其残暴”,受害者最小只有四岁。赫尔松地区的一名检察官称这是一种“系统性做法”。在被占领的乌克兰领土上,这种暴力行为主要针对妇女和女孩,而拘留中的受害者大多是男性战俘——对他们实施暴力往往是为了通过象征性地剥夺他们的男子气概来使他们失去人性。
