农业食品废物是农业综合企业的重要副产品,具有巨大的资源回收和可持续创新潜力。如Matei等人所述。 (2021),这种废物流在各个部门提供了宝贵的机会。 传统上主要用作动物饲料,但最近的研究,例如Caliceti等人的研究。 (2022),已经证明了其在多个行业中的更广泛适用性。 农业食品副产品(如果皮,香菜,种子和叶子)富含生物活性化合物,包括苯酚,花青素,肽和脂肪酸。 这些副产品还包含有价值的纤维和酶,使其非常适合在功能性食品,药品和化妆品中应用(DelRío等,2021)。 生物活性成分和结构元素位置的这种组合将农业食品废物作为一种有前途且多功能的原材料,用于多种工业用途(Atiwesh等,2021)。如Matei等人所述。(2021),这种废物流在各个部门提供了宝贵的机会。传统上主要用作动物饲料,但最近的研究,例如Caliceti等人的研究。(2022),已经证明了其在多个行业中的更广泛适用性。农业食品副产品(如果皮,香菜,种子和叶子)富含生物活性化合物,包括苯酚,花青素,肽和脂肪酸。这些副产品还包含有价值的纤维和酶,使其非常适合在功能性食品,药品和化妆品中应用(DelRío等,2021)。生物活性成分和结构元素位置的这种组合将农业食品废物作为一种有前途且多功能的原材料,用于多种工业用途(Atiwesh等,2021)。
Shell Energy计划构建,拥有和操作Wallerawang 9电池壳能量能够成为Lithgow附近重新塑造的Wallerawang Power Station的第一位租户,Greenspot正在以主平面的多种用途区域和经济增长中心和新南威尔士州的经济增长中心 - 新南威尔士州 - 2023年1月10日。Greenspot宣布将在500MW/1,000MWH电池储能系统(BESS)上与Shell Energy合作,该系统将在Lithgow附近的旧Wallerawang Power Station的地点建造。批准的调度容量为500MW的电池将位于Wallerawang发电厂站点内,在2014年,两个500MW燃煤发电单元被退役。贝丝将被称为“沃勒瓦(Wallerawang)9”,承认该站点中1至8的数十年的运营,并尊重Lithgow在满足美国能源需求方面所扮演的角色。Shell Energy将负责网格连接过程,并在最终的投资决定中,计划在20公顷的土地上建造,拥有和操作电池,可从Greenspot租用。Greenspot将另外200公顷的620公顷现场确定为一系列未来面临和高科技行业的就业中心。“大利特哥地区为新南威尔士州的供电近70年做出了贡献,”格林斯波特首席执行官布雷特·霍金斯(Brett Hawkins)说。Shell能源首席执行官Greg Joiner说,他期待与Greenspot合作进行该项目。 “电池能量存储在能源过渡中起着至关重要的作用,通过支持可再生生成,并为电网和消费者的可靠性提高。Shell能源首席执行官Greg Joiner说,他期待与Greenspot合作进行该项目。“电池能量存储在能源过渡中起着至关重要的作用,通过支持可再生生成,并为电网和消费者的可靠性提高。“随着经济脱碳和新的能源技术的采用,实施策略以吸引一系列新业务的策略至关重要。他说:“壳牌公司正在澳大利亚建立一个可再生能源的投资组合,我们期待与Shell在Wallerawang 9上合作,使Greenspot Procinct和Lithgow地区的成功取得了成功。”壳牌能源很荣幸能在新南威尔士州的能源未来迈出重要的一步,尤其是在帮助诸如Lithgow这样的地区社区时,当能量越来越脱碳时,继续发挥作用。” Greenspot获得了Bess的开发批准,该批准将连接到相邻的330kV Wallerawang变电站,该变电站历来促进了将燃煤发电传播到电网的传播。“靠近高压传输网络,通往主要道路,铁路运输以及重要的现有和拟议的水基础设施以及靠近高融合数据网络的距离,这使沃勒沃(Wallerawang)网站具有很高的竞争力,可以吸引推动当地经济前进所需的投资,”霍金斯先生说。“针对私营部门,社区团体和教育机构之间的有针对性的合作对于确保在利特哥继续提供代际就业机会至关重要。”
MPA和Shell Sign Mou,以加速新加坡的海上脱碳工作,新加坡的海事和港口管理局(MPA)和Shell Eastern Trading Pte Ltd(Shell)签署了一份谅解备忘录(MOU),以扩大有关新加坡海上脱碳工作的合作。MPA首席执行官Teo Eng Dih先生和亚太地区的壳牌运输和海事总经理Nick Potter先生签署了谅解备忘录。签署是由贸易关系运输和负责部长兼新加坡壳牌公司主席S Iswaran先生见证的。2。作为五年谅解备忘录的一部分,MPA和Shell将共同努力,以推动新加坡电力港工艺品的采用以及开发低和零碳燃料的发展。3。为了支持采用电力港工艺品,MPA和Shell将确定与能源相关的开发机会。这包括为电港工艺收费基础设施的合作。双方还将在低和零碳燃料的研究和开发上共同努力。这包括在处理,操作和维护此类燃料的船只中对机组人员进行培训。4。“ MPA致力于与壳牌等行业合作伙伴合作,以推动海上行业的脱碳工作。我们与壳牌的合作伙伴关系将利用MPA和Shell在海上脱碳,可再生能源和创新方面的专业知识。5。谅解备忘录是实现我们2030年目标的重要一步“我们很高兴与MPA签署此谅解备忘录,这为继续在各种脱碳解决方案(包括电气化和低和零碳燃料)上铺平了道路。Shell正在与来自整个价值链的行业利益相关者紧密合作,以探索运输脱碳的燃料和技术途径,今年晚些时候,我们计划在壳牌式的船只上开始一项氢燃料电池试验,” Nick Potter先生说。
本研究的目的是通过遵守和执行国际法规为 Shell-Pastaza 机场制定安全计划。通过观察表、调查和在机场设施采访该航空运输系统的主要参与者来收集信息。满意度调查针对机场用户。在分析了主要信息后,可以指出机场在以下方面存在不足:危险区域的识别、战略区域的故障、在存在危险的情况下缺乏运营安全程序。运营安全计划的制定和发展是在机场的技术和行政方面进行的,必须以协调一致的方式运作。运营安全计划将使机场在可能出现的每种情况下都有协议、程序、仪表板和责任。
根据《1998 年石油法》和 BEIS 指导说明:海上石油和天然气设施及管道退役,业主作为第 29 条通知持有人,通过退役计划 (DP) 向英国商业、能源和工业战略部 (BEIS) 1 寻求批准,将 Brent Bravo 顶部结构完全拆除并送回岸上进行再利用、回收和处置,从而退役该结构。Brent 油田顶部结构退役计划(涵盖 Brent Alpha、Brent Bravo 和 Brent Charlie)于 2018 年 8 月 6 日获得了海上石油环境和退役监管机构 (OPRED) 的批准。本文档是一份关于切割、起重、移除、拆除、再利用、回收和处置 Brent Bravo 顶部结构的海上和陆上工作计划的进度报告。报告还涵盖了在重力式结构 (GBS) 支柱顶部安装混凝土盖和导航辅助设备 (AtoN) 的工作。报告由合资方 Shell U.K. Limited 和 Esso Exploration and Production UK Limited 提交。Brent Bravo 顶部是第二个退役并从 Brent 油田移除的顶部;Brent Delta 顶部于 2017 年 5 月被吊起,拆除工作于 2019 年 2 月完成。报告描述了退役期间执行的工作计划,并对任何与计划计划不同的情况提供了解释。本报告涵盖了直到 t 拆除结束的时期
&这些作者为这项工作做出了同样的贡献,应被视为联合第一作者 *通讯作者。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。 黄)。电子邮件地址:zwhdwy@hnu.edu.cn(W。H Zhang); thuangsq@jnu.edu.cn(S.Q。黄)。
Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 1)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,变成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 1)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,变成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
ZrO 2 和 HfO 2 NC 均用作光学活性镧系元素离子(例如铕)的主体。1,14-18 氟化物(例如 NaYF 4 和 NaGdF 4 )是另一类广泛用作镧系元素主体的纳米晶体,用于上转换和下转换。19-23 在氟化物体系中,合成工艺已经很成熟,可以在纳米晶体内精确定位掺杂剂,并在掺杂核上生长未掺杂的壳。后者产生核/壳结构,这在半导体纳米晶体(量子点)领域是首创的,用于防止激发电子和空穴与表面陷阱相互作用。24、25 同样,壳层保护镧系元素免受表面效应的影响,从而提高上转换和下转换过程的量子效率。 26 此外,在镧系元素掺杂的氟化物的情况下,多层结构可提供受控的能量级联。27 更高的量子效率加上较长的寿命使其可用于时间门控荧光成像等。15、28 由于生产具有复杂(例如核/壳)结构的胶体稳定氧化物纳米晶体的合成挑战,氧化物主体的使用范围较窄。29 但是,氧化物主体的化学性质更稳定,而氟化物可溶解在高度稀释的水介质中。30
本研究的目的是通过遵守和执行国际法规,为 Shell-Pastaza 机场制定安全计划。信息是通过观察表、调查和与机场设施对该航空运输系统主要参与者的访谈收集的。满意度调查针对机场用户。在分析主要信息后,可以指出机场在以下方面存在缺陷:危险区域识别、战略区域失灵、在存在危险的情况下缺乏运营安全程序。运营安全计划的制定和发展是在机场的技术和行政方面进行的,必须以协调一致的方式运作。运营安全计划将使机场在可能出现的每种情况下都有协议、程序、仪表板和责任。