方法:使用2.5%腺嘌呤诱导CKD大鼠模型,并通过检测尿毒症毒素,炎性细胞因子和肾功能来评估SSKE的效果。使用电子显微镜观察到肠和肾脏的结构。通过H&E染色检测到肠道和肾脏的病理变化。通过免疫组织化学检测到闭塞蛋白,Claudin-1和ZO-1的表达。使用Masson和PAS染色观察到肾纤维化程度。通过免疫荧光染色检测到肠中NF-κB和MyD88蛋白在肠中的表达,以及肾脏中F4/80,TLR4,NF-κB和MyD88的表达。nf-κB-重复转基因小鼠用于构建CKD小鼠模型,并使用小动物活图像仪在1 - 6天内检测到小鼠的荧光强度的变化。最后,使用16S rRNA扩增子测序来监测SSKE治疗前后CKD患者肠道肠道的变化。
Koh,P.S.,MA,Z.,Novoselov,N。et Zhang,G。(2019)。 收益的管理决策,对盈利能力的资本投资响应能力以及公司估值。 dans:2019年第19届亚洲学术会计协会年会。Koh,P.S.,MA,Z.,Novoselov,N。et Zhang,G。(2019)。收益的管理决策,对盈利能力的资本投资响应能力以及公司估值。dans:2019年第19届亚洲学术会计协会年会。
1。Araldi,R.P。等人,定期散布的短篇小说重复序列(CRISPR/CAS)工具的医疗应用:全面的概述。基因,2020年。745:p。 144636。2。Frangoul,H.,T.W。 ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。 回复。 n Engl J Med,2021。 384(23):p。 E91。 3。 groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。 分子微生物学,1993。 10(5):p。 1057-1065。 4。 Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。 细菌学杂志,1987年。 169(12):p。 5429-5433。 5。 Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Frangoul,H.,T.W。ho和S. corbacioglu,CRISPR-Cas9基因编辑,用于镰状细胞疾病和β-杂质贫血。回复。n Engl J Med,2021。384(23):p。 E91。3。groenen,P.M.A。等人,DNA多态性的性质,在分枝杆菌 - 链球菌的直接重复簇中 - 通过一种新型分型方法施用应变分化的应用。分子微生物学,1993。10(5):p。 1057-1065。4。Ishino,Y。等,IAP基因的核苷酸 - 序列,负责大肠杆菌中碱性磷酸酶同工酶的转化,以及基因产物的鉴定。细菌学杂志,1987年。169(12):p。 5429-5433。5。Chen,J.S。 和J.A. doudna,Cas9及其CRISPR同事的化学。 自然评论化学,2017年。 1(10)。 6。 Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Chen,J.S。和J.A.doudna,Cas9及其CRISPR同事的化学。自然评论化学,2017年。1(10)。6。Doudna,J.A。 和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。 科学,2014年。 346(6213):p。 1077-+。 7。 Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。 科学报告,2019年。 9。 8。 tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。 自然生物技术,2015年。 9。Doudna,J.A。和E. Charpentier,带有CRISPR-CAS9的基因组工程的新领域。科学,2014年。346(6213):p。 1077-+。7。Whinn,K.S。等人,Nuclease Dead Cas9是用于DNA复制的可编程障碍。科学报告,2019年。9。8。tsai,S.Q。等,指南seq可以通过CRISPR-CAS核酸酶对靶向裂解的全基因组进行分析。自然生物技术,2015年。9。33(2):p。 187-197。Wang,Y。等人,CRISPR系统的特异性分析揭示了脱靶基因编辑的大大增强。科学报告,2020年。10(1)。10。Zuccaro,M.V。等人,在人类胚胎中Cas9裂解后的等位基因特异性染色体去除。单元格,2020。183(6):p。 1650-+。11。Aschenbrenner,S。等人,将Cas9耦合到人工抑制域增强了CRISPR-CAS9目标特异性。科学进步,2020年。6(6)。12。Bondy-DeNomy,J。等人,抗Crispr蛋白抑制CRISPR-CAS的多种机制。自然,2015年。526(7571):p。 136-9。13。Khajanchi,N。和K. Saha,通过小分子调节进行体细胞基因组编辑,控制CRISPR。mol ther,2022。30(1):p。 17-31。14。Han,J。等人,对小分子药物的超敏反应。前疫苗,2022年。13:p。 1016730。15。Pettersson,M.和C.M. 机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。 Div drug Discov Today Technol,2019年。 31:p。 15-27。 16。 Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Pettersson,M.和C.M.机组人员,针对嵌合体的蛋白水解(Protacs) - 过去,现在和未来。Div drug Discov Today Technol,2019年。31:p。 15-27。16。Bondeson,D.P。 和C.M. 机组人员,小分子靶向蛋白质降解。 药理学和毒理学年度评论,第57卷,2017年。 57:p。 107-123。 17。 li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。 分子,2022。 27(24)。 18。Bondeson,D.P。和C.M.机组人员,小分子靶向蛋白质降解。药理学和毒理学年度评论,第57卷,2017年。57:p。 107-123。17。li,R。等人,癌症治疗中的蛋白水解靶向嵌合体(Protac):现在和未来。分子,2022。27(24)。18。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。 PLOS Comput Biol,2016年。 12(1):p。 E1004724。Farasat,I。和H.M. SALIS,一种CRIS/CAS9活性的生物物理模型,用于基因组编辑和基因调节的合理设计。PLOS Comput Biol,2016年。12(1):p。 E1004724。
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
背景:误诊、乱收费、排队、诊所等待时间长等是全球医疗行业长期存在的现象。这些因素可能导致患者对临床医生误诊的焦虑。然而,随着大数据在生物医学和医疗保健界的使用日益增长,人工智能 (Al) 诊断技术的性能正在提高,可以帮助避免医疗实践错误,包括在当前 COVID-19 的情况下。目的:本研究旨在在中国 COVID-19 疫情的背景下,从人工智能诊断与临床医生的不同角度可视化和衡量患者的异质偏好。我们还旨在说明离散选择实验 (DCE) 潜在类别的不同决策因素,以及人工智能技术在 SARS-CoV-2 大流行期间及未来判断和管理中的应用前景。方法:DCE 方法是本文应用的主要分析方法。我们假设了诊断方法、门诊等候时间、诊断时间、准确率、诊断后随访、诊断费用等不同维度的属性,并形成问卷。利用 DCE 问卷收集的数据,应用 Sawtooth 软件对数据集构建了广义多项逻辑 (GMNL) 模型、混合逻辑模型和潜在类别模型。此外,我们计算了变量的系数、标准误差、P 值和优势比 (OR),并形成效用报告以呈现属性的重要性和加权百分比。结果:无论临床医生的描述如何,共有 55.8% 的受访者 (767 人中的 428 人) 选择了 AI 诊断。在 GMNL 模型中,我们发现人们最喜欢 100% 的准确率 (OR 4.548, 95% CI 4.048-5.110, P <.001)。对于潜在类别模型,最容易接受的模型由 3 个潜在类别的受访者组成。影响最大、百分比权重最高的属性是诊断的准确性(总体为 39.29%)和费用(总体为 21.69%),尤其是对诊断“准确性”属性的偏好,该属性在各个类别中保持不变。对于第 1 类和第 3 类,人们更喜欢 AI + 临床医生的方法(第 1 类:OR 1.247,95% CI 1.036-1.463,P <.001;第 3 类:OR 1.958,95% CI
1 暨南大学医学院公共卫生与预防医学系,广州,中国 2 中山大学肿瘤防治中心,广州,中国 3 暨南大学信息科学与技术学院,广州,中国 4 暨南大学国际学院,广州,中国 5 中山大学国际关系学院,广州,中国 6 暨南大学新闻与传播学院,广州,中国 7 格罗宁根大学经济与商学院,格罗宁根,荷兰 8 布莱根妇女医院妇产科,波士顿,美国 9 哈佛大学医学院麻省总医院基因组医学中心,波士顿,美国 10 香港中文大学妇产科,香港,香港 11 香港大学公共卫生学院,香港,香港 12 香港中文大学流行病学与公共卫生系环境与健康多学科合作研究中心英国伦敦帝国理工学院圣玛丽校区公共卫生学院生物统计学专业 * 这些作者的贡献相同
参芪注射液联合益生菌改善胃癌患者胃部分切除术后营养状况 刘亚峰 1 贾明科 2* 1 榆林市第一医院普外科,陕西省榆林市 2 榆林市第一医院消化内科,陕西省榆林市 摘要:近年来,胃癌的发病率呈上升趋势,手术过程中通常需要切除与肿瘤病变相关的部分胃组织,导致患者术后健康状况不佳及预后不良。益生菌作为一种活性微生物,在改善胃肠功能、增强免疫力方面发挥重要作用。本研究将135例胃癌患者随机分为对照组、益生菌组和联合组。所有研究对象均在我院接受根治性胃癌切除术。术后对照组给予常规治疗,益生菌组给予常规治疗+益生菌,联合组给予常规治疗+益生菌+参芪注射液。通过研究发现,胃癌患者使用益生菌后,术后康复过程较接受常规肠内营养混悬液治疗的患者明显缩短,免疫功能及营养状况得到有效改善,预后生存率提高。联合组患者CD4+、ALB、HGB、PA、TP高于益生菌组(P<0.05),CD4+/CD8+低于益生菌组(P<0.05)。关键词 : 胃癌,营养状况,胃部分切除术,益生菌,参芪注射液。提交日期 2024-07-30 – 修改日期 2024-09-23 – 接受日期 2024-10-02 引言 胃癌(GC)起源于胃粘膜上皮细胞,是全球最常见的恶性肿瘤之一,平均发病率约为每 100,000 人 23 至 54 人(Smyth et al. ,2020)。GC 早期非常隐匿,可能仅表现为阵发性腹痛和恶心,容易被患者忽视或处理不当,导致超过 60% 的患者诊断时已至中晚期(Machlowska et al. ,2020)。这直接导致 GC 患者的预后死亡风险普遍较高,五年生存率不到 30%(Guan et al. ,2023)。临床上胃癌的治疗仍以手术联合化疗为主,但由于胃癌细胞恶性浸润,手术中通常需要切除部分粘连的胃组织,这极大影响了患者的术后康复(Thrift & El-Serag,2020)。胃作为人体最重要的消化器官之一,是不可再生的器官,切除部分胃组织后,患者的消化功能普遍受限,直接影响人体正常的营养摄入和吸收,降低患者的生活质量(Sexton et al. , 2020)。因此,如何为胃癌患者的手术提供更可靠的安全保障,也是决定其预后和健康的关键。
3.4食品安全3.5食物选择3.6食物出处3.7食物准备和烹饪技术 - 通过非EXAM评估(NEA)规范评估https://www.aqa.org.uk/subjects/freood-preeparation-preparation-preparation-preparation-preparation-preparation-preparation-pher--nutrition-und-nutrition-und-nutrition-un-gcse/gcse/gcse/food-preeparation一下https://revisionworld.com/gcse-revision/food-preparation-preparation-and-nutrition-gcse-revision 3.3.1
人工智能的进步为商业世界带来了机遇和挑战,其潜在的颠覆性影响引起了管理学者的研究兴趣。这项探索性研究采用系统的文献综述方法来探索人工智能与能力之间的联系,以帮助企业和个人更好地应对人工智能带来的颠覆。在审查了过去十年(2011-2021 年)Business Source Complete数据库中的相关出版物后,我们选择了65篇文章,内容涉及人工智能的辩论和问题以及与能力相关的观点。此外,我们综合了两个框架(企业层面的 RBV 框架;个人层面的关键和 STEM 能力)和一个概述,以全面了解人工智能与能力之间的关系。我们在文献中发现的经验证据相对较少,人工智能的实施仍处于初步阶段,我们汇总的框架 ZHUH ³FRQWH[WXDO VHQVLWLYH´ :H VXJJHVW WKDW IXWXUH UHVHDUFK FRXOG EH FRQGXFWHG LQ D VSHFLILF 行业并产生更丰富的见解。
生物医学科学与工程是一项跨学科计划,涉及用于医疗保健目的的生物学和医学的工程原理和设计概念,例如诊断,监测和治疗疾病。我们的BME计划的主要任务是培养具有生物学,医学和工程领域的跨学科专业知识的学生,以训练他们通过分子生物学,生物力学,生物力学,信息学,纳米技术,仪器,仪器和材料工程的知识来进行研究。该计划是跨学科学习,创造性思维,解决问题的技能以及对新兴生物技术及其未来发展的敏锐感的坚实基础。通过该计划的精心设计的研究计划,预计学生将受过良好的教育,以实现生物医学工程领域领导力的最前沿。