摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
摘要:激光诱导的荧光(LIF)技术已被广泛应用于水生浮游植物的遥感中。然而,由于激光激发引起的荧光信号弱和水中激光的显着衰减,分析检测变得具有挑战性。此外,很难同时检索衰减系数(K MF激光雷达)和通过单个荧光激光拉尔(lidar)在180°(βF)处的荧光体积散射函数。为了解决这些问题,提出了一种新型的全纤维荧光海洋激光雷达,其特征是:1)使用单光子检测技术获得地下荧光曲线,以及2)引入荧光激光痛的KLETT倒置方法,以同时检索K MF Lidar和βF。根据理论分析,叶绿素浓度的最大相对误差范围为0.01 mg/m 3至10 mg/m 3,在10 m的水深度范围内含量小于20%,而K MF激光射线的最大相对误差则小于10%。最后,将船舶单光子荧光激光雷达部署在实验容器上,以在离岸区域的固定站进行9小时以上的实验,从而验证了其分析能力。这些结果证明了LiDAR在分析水生浮游植物的分析中的潜力,从而提供了支持研究地下浮游植物的动态变化和环境反应的支持。
摘要:澳大利亚R/V调查员的最新航行在整个偏远的南大洋中提供了前所未有的降水观察结果,该降水量既是海洋降雨和冰相降水测量网络(OceanRain)海上圆点和双极化C波段C-Band C-Band Cane Radar(Oceanpol)。本研究采用这些观察结果来评估GPM(IMERG)的全球降水测量(GPM)综合多卫星检索和ECMWF(ERA5)降水产物产生的第五次重大全球重新分析。以60分钟和0.25 8(; 25 km)的分辨率工作,在整个过程中最常观察到小雨和毛毛雨。对海洋评估时,imerg产物高估了降水强度,但捕获了出现频率。从天气/过程量表中,发现IMERG在暖额和高纬度气旋条件下是最不准确(高估的强度),通常会预先发送多层云。在临时条件下,imerg低估了降水频率。相比之下,ERA5的技能在各种综合条件下更加一致,除了高压频率(强度)高度高估(低估)的高压条件。使用Oceanpol Radar,这是一个面积到区域分析(分数技能得分),发现ERA5的技能比Imerg更高。在海洋径流计,iMerg和ERA5之间的阶段分类中几乎没有共识。比较因不同数据集中的相分类的各种假设而变得复杂。
MiG-21-93 战斗机现代化计划。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.15 MiG-31E 拦截战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.16 MiG-29 轻型战术战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.17 MiG-29SE 轻型战术战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.18 MiG-29SMT 轻型多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.19 MiG-29K 舰载多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.20 MiG-29KUB 舰载战斗教练机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.20 MiG-29M/M2 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.21 Su-27SKM 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.22 Su-30MK 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.23 Su-30MK2 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.24 Su-35 多用途战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.25 Su-33 舰载战斗机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.26
SBAS SOLAC和非索拉斯申请指南•Marec Shipborne接收器(E1/E5)•ASGARD•蓝色盒子Porbeagle VMS•SEGRA DFMC和SBAS接收器•EDG2E•MUGG DRONE-DRONE-BORNE接收者
Crozon, C.、Steijl, R. 和 Barakos, G.N. (2017) 耦合飞行动力学和 CFD - 舰载环境中直升机的演示。航空杂志,(doi:10.1017/aer.2017.112)这是作者最终接受的版本。此版本与已发布的版本之间可能存在差异。如果您想引用,建议您查阅出版商的版本。
第 105 届海上安全委员会 (MSC 105) 会议于 2022 年 4 月 20 日至 29 日举行。由于国际海事组织最近发布了会议记录、决议和通函,下面提供了 MSC 105 上所做决定的摘要,供您参考。1.通过的强制性要求 MSC 105 通过了以下强制性要求: (1) 对 SOLAS 等的修订。由于全球海上遇险和安全系统 (GMDSS) 的现代化(见附件 1) 继最近对 GMDSS 进行现代化之后,通过了对 SOLAS II-1、III、IV 和 V 的修订草案以及附录(证书)等。此外,还批准了相关的性能标准、指南和指导。修改要点如下:i)将“A3海域”的定义由“n Inmarsat地球静止卫星”修改为“由船上配备的船舶地面站支持的公认的移动卫星业务”。ii)SOLAS公约第III/6条有关双向甚高频无线电话设备和搜救定位装置(SART)的规定已移至SOLAS公约第IV条。iii)中频(NAVTEX)和高频、船载甚高频无线电设备、船载中频和中频/高频无线电设备、Inmarsat-C船舶地面站等接收海上安全信息和搜救相关信息的性能标准进行了修改。适用日期:2024年1月1日或之后 (2) IMSBC规则修正案 IMSBC规则第6次修正案(包括新货物)已获通过。适用日期:2023年12月1日或之后
第 105 届海上安全委员会 (MSC 105) 会议于 2022 年 4 月 20 日至 29 日举行。由于国际海事组织最近发布了会议记录、决议和通函,下面提供了 MSC 105 上所做决定的摘要,供您参考。1.通过的强制性要求 MSC 105 通过了以下强制性要求: (1) 对 SOLAS 等的修订。由于全球海上遇险和安全系统 (GMDSS) 的现代化(见附件 1) 继最近对 GMDSS 进行现代化之后,通过了对 SOLAS II-1、III、IV 和 V 的修订草案以及附录(证书)等。此外,还批准了相关的性能标准、指南和指导。修改要点如下:i)将“A3海域”的定义由“n Inmarsat地球静止卫星”修改为“由船上配备的船舶地面站支持的公认的移动卫星业务”。ii)SOLAS公约第III/6条有关双向甚高频无线电话设备和搜救定位装置(SART)的规定已移至SOLAS公约第IV条。iii)中频(NAVTEX)和高频、船载甚高频无线电设备、船载中频和中频/高频无线电设备、Inmarsat-C船舶地面站等接收海上安全信息和搜救相关信息的性能标准进行了修改。适用日期:2024年1月1日或之后 (2) IMSBC规则修正案 IMSBC规则第6次修正案(包括新货物)已获通过。适用日期:2023年12月1日或之后