简介 HEROZ 专注于作为各行业价值创造源泉的“核心业务”,并在核心业务中实现高价值的现实世界 AI 技术。HEROZ 的 AI 工程师开发了著名的 AI-Shogi,该游戏击败了专业的 Shogi 选手。他们继续每天致力于开发其他 AI 工具,包括机器学习,最终开发了 Shogi Wars、CHESS HEROZ 和 BackgammonAce 等游戏。HEROZ 已经连续三年参加世界计算机 Shogi 锦标赛。HEROZ 曾多次获得冠军和亚军。HEROZ 还作为日本深度学习协会 (JDLA) 的成员正在开发一种新的 AI 系统。HEROZ 也是日本人工智能学会的支持成员,他们紧跟 AI 的前沿趋势。除了智力游戏之外,HEROZ 开发的 AI 在包括主要金融机构在内的许多其他行业中发挥着关键作用。
本文使用日本职业将棋选手在确定性和有限博弈中控制各种外部因素的记录,研究技术变革的出现如何以及在多大程度上影响选手胜率的老化和天赋能力。我们收集了 1968 年至 2019 年职业将棋选手的比赛,分为三个时期:1968-1989 年、1990-2012 年(信息和通信技术 (ICT) 的传播)和 2013-2019 年(人工智能 (AI))。我们发现:(1)人工智能的传播降低了天赋能力对选手表现的影响。因此,同龄选手之间的表现差距缩小了;(2)在所有时期中,选手的胜率从 20 岁时开始持续下降,并且随着年龄的增长而下降;(3)人工智能加速了胜率的老化下降,从而加大了不同年龄选手之间的表现差距; (4)人工智能对衰老衰退和获胜概率的影响在高先天技能的玩家身上有所体现,但在低先天技能的玩家身上则没有体现。这些发现仅针对将棋这种棋盘游戏,但研究这些发现对其他劳动力市场的适用程度也很有价值。
人工智能(AI)取得了长足的进步。在围棋和将棋的世界里,人类已经无法战胜AI。这股浪潮将进一步蔓延。学术界也不例外。AI有可能取代学者们一直在进行的研究。尤其是在我所研究的哲学领域,思考本身就是哲学的全部,因此哲学可能会遭遇与围棋和将棋相同的命运。让我们进一步思考这一点。首先,发现过去哲学家的思维模式是AI最擅长的。例如,可以让AI阅读哲学家康德的全集,从中发现类似康德的思维模式,并利用它们创建一个名为“人工智能康德”的应用程序。我预测,未来康德研究人员的工作将是向“人工智能康德”提出各种问题并分析其给出的答案。在这个领域,AI和哲学家可以建立愉快的合作关系。接下来,让AI读遍所有过去哲学家的著作,从中尽可能多地提取哲学思维模式,结果就是一系列人类能够思考的哲学思维模式。但是,肯定还有很多哲学思维模式是过去的哲学家们所忽略的,那么就让AI去发现这些未知的思维模式吧。结果就是一系列人类能够思考的哲学思维模式。一旦做到这一点,人类就无法再创造出新的哲学思维模式了。未来哲学家的工作将更接近于一种研究哲学AI行为的计算机科学。但是,这里出现了一个根本性的问题,这种哲学AI是在做真正的哲学工作吗?如果它所做的只是发现外部输入数据中未被发现的模式,或者为由* 教授,人文科学,早稻田大学,2-579-15 Mikajima,Tokorozawa,Saitama,359-1192 Japan 提出的问题提供解决方案。电子邮件:http://www.lifestudies.org/feedback.html
Glickman,M。E.和Jones,A。C.(1999)。评估国际象棋评级系统。Chance-Berlin,然后是纽约,12,21-28。Kim,B.,Wattenberg,M.,Gilmer,J.,Cai,C.,Wexler,J.,Viegas,F。等。 (2018)。 可解释性超出特征归因:具有概念激活向量(TCAV)的定量测试。 在国际机器学习会议上(pp。) 2668–2677)。 Lee,S。(2000)。 非负矩阵因子化算法。 nips。 McGrath,T.,Kapishnikov,A. 。 。 Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Kim,B.,Wattenberg,M.,Gilmer,J.,Cai,C.,Wexler,J.,Viegas,F。等。(2018)。可解释性超出特征归因:具有概念激活向量(TCAV)的定量测试。在国际机器学习会议上(pp。2668–2677)。Lee,S。(2000)。 非负矩阵因子化算法。 nips。 McGrath,T.,Kapishnikov,A. 。 。 Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Lee,S。(2000)。非负矩阵因子化算法。nips。McGrath,T.,Kapishnikov,A. 。 。 Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。McGrath,T.,Kapishnikov,A.。。Kramnik,V。(2022)。 在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Kramnik,V。(2022)。在Alphazero中获得国际象棋知识。 国家科学院的会议记录,119(47),E2206625119。 Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。 (2018)。 一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。 Sci-Ence,362(6419),1140–1144。 Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。 。 。 其他人(2017年)。 掌握没有人类知识的Go的游戏。 自然,550(7676),354–359。 Steingrimsson,H。(2021)。 国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。 在2021年IEEE游戏会议(COG)会议(pp。) 1–8)。 Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。在Alphazero中获得国际象棋知识。国家科学院的会议记录,119(47),E2206625119。Silver,D.,Hubert,T.,Schrittwieser,J.,Antonoglou,I.,Lai,M。,等。(2018)。一种普遍的增强学习算法,掌握了国际象棋,Shogi并进行自我游戏。Sci-Ence,362(6419),1140–1144。Silver,D.,Schrittwieser,J.,Simonyan,K.,Antonoglou,I.,Huang,A.,Guez,A.,。。。其他人(2017年)。掌握没有人类知识的Go的游戏。自然,550(7676),354–359。Steingrimsson,H。(2021)。国际象棋堡垒,这是对技术状态象征[Neuro]架构的因果测试。在2021年IEEE游戏会议(COG)会议(pp。1–8)。Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。 ARXIV预印ARXIV:2206.10498。 (2023)。Valmeekam,K.,Olmo,A.,Sreedharan,S。和Kambhampati,S。(2022)。ARXIV预印ARXIV:2206.10498。(2023)。大型语言模型仍然无法计划(LLMS的基准计划和推理有关变更的理由)。van Opheusden,B.,Kuperwajs,I.,Galbiati,G.,Bnaya,Z.,Li,Y。,&Ma,W。J.专业知识增加了人类游戏玩法的计划深度。自然,618(7967),1000–1005。
摘要:近年来,人工智能在将棋、黑白棋等具有完美信息的游戏中已经可以与顶级职业选手相媲美,但在具有不完美信息的游戏中却只取得了部分成功。例如,一些研究人员已经在扑克游戏中实现了与顶级职业选手相媲美的人工智能,但在麻将游戏中却未能实现,麻将是一种信息不完美且复杂度高于扑克的游戏。Mizukami 等人(2013, 2014) 构建了一个接近顶级职业麻将水平的人工智能。但是,这种人工智能无法夺取一张牌来为每个 Yaku 构建一个组合。另一方面,Harada 等人构建了麻将人工智能——全手牌提取(CHE),该人工智能考虑了高概率构建的役牌。基于此工作,我们将 CHE 应用于麻将人工智能,该人工智能可以认领一张牌,从而为每个役牌构建一个组合。在使用 CHE 的麻将游戏中,所提出的人工智能的有效性得到了证实。
在特定领域,AI已经超越了人类的表现。去年,斯坦福大学的研究人员利用AI通过正面X光扫描识别了14种不同的疾病。该系统的创建仅用了一个月的时间,AI的准确率超过了人类肺炎诊断师。这项研究发表在《科学》杂志上。9 2017年,一个名为AlphaZero的人工神经网络系统在不到24小时内就获得了国际象棋、将棋和围棋超人水平的表现。这是在除了游戏规则之外没有其他领域知识的情况下完成的。10 2018年5月,谷歌首席执行官Sundar Pichai在Google I/O大会上发表主题演讲时,展示了一个名为Duplex的人工智能系统,引起了轰动。该系统能够通过电话安排预约,无需人工干预,但给人的印象是双方正在进行自然对话。人们很容易想象人工智能正在迅速变得超级智能,并因此获得所有在小说中被归因于它的积极和消极能力,因为自动驾驶汽车和听起来像人类的机器人等人工智能奇迹层出不穷。当然,情况根本不是这样
喜马偕尔邦科学、技术和环境委员会 (HIMCOSTE) 成立于 1986 年。它是印度政府科技部下属设立的全国性邦级科技委员会网络的一部分。旨在推动整个邦的科技干预,并与中央部委在科技领域进行协调。喜马偕尔邦是一个多山的喜马拉雅邦,地势高大,气候条件恶劣,生物多样性丰富,为科技干预提供了广泛的机遇,以改善其居民的社会经济和生计选择。委员会在科技的各个领域都有很大的工作潜力,可以为邦的发展做出重大贡献。自成立以来,HIMCOSTE 一直与印度科学技术部 (DST)、太空部 (DoS)、环境、森林和气候变化部 (MoEF&CC)、新再生能源部 (MNRE) 等积极合作。已实施和开展了多项计划。从利用空间技术、传播科学技术应用、科普、保护知识产权、可持续利用生物多样性、环境保护到气候变化,印度国务院充当着知识中心,为印度政府提供政策解决方案。尤其是为整个社会。作为其最新项目的一部分,印度国务院在 Anandpur、Shogi 设立了科学学习和创造力中心。CSLC 科学博物馆一方面提供了促进科学学习的机会,另一方面激发了孩子们形成创造性想法的机会。
喜马偕尔邦科学、技术与环境委员会 (HIMCOSTE) 成立于 1986 年。它是印度政府科技部下属的全国性邦级科技委员会网络的一部分,旨在推动全邦的科技干预并与中央各部委在科技领域进行协调。喜马偕尔邦是一个山地邦,地势高峻,气候条件恶劣,生物多样性丰富,为科技干预提供了广泛的机遇,有助于改善居民的社会经济状况和生计选择。委员会在科技的各个领域都有很大的工作潜力,可以为该邦的发展做出重大贡献。自成立以来,HIMCOSTE 积极与印度科技部 (DST)、太空部 (DoS)、环境、森林与气候变化部 (MoEF&CC)、新再生能源部 (MNRE) 等合作,实施并开展了多项计划。从利用空间技术、传播科学技术应用、科普、保护知识产权、可持续利用生物多样性、环境保护到气候变化,印度国务院充当着知识中心的角色,为印度政府乃至整个社会提供政策解决方案。作为其最新举措的一部分,印度国务院在 Anandpur、Shogi 设立了科学学习与创造力中心。CSLC 科学博物馆一方面提供了促进科学学习的机会,另一方面激发了孩子们发挥创造力。
这段对话来自 2014 年电影《机械姬》的早期场景,其中内森邀请凯勒布判断内森是否成功创造出了人工智能。1 强大的通用人工智能的成就长期以来一直吸引着我们的想象力,不仅因为它令人兴奋和担忧的可能性,也因为它为人类带来了一个全新的未知时代。斯图尔特·罗素在 2021 年 BBC 里斯讲座“与人工智能共存”的开场白中指出,“通用人工智能的最终出现将是人类历史上最大的事件。”2 在过去十年中,一系列令人印象深刻的成果引起了公众对强大人工智能可能性的广泛关注。在机器视觉方面,研究人员展示了在某些情况下可以像人类一样甚至比人类更好地识别物体的系统。然后是游戏。复杂的策略游戏长期以来都与超强的智能联系在一起,因此当人工智能系统在国际象棋、雅达利游戏、围棋、将棋、星际争霸和 Dota 中击败最优秀的人类玩家时,全世界都注意到了。这不仅仅是人工智能击败了人类(尽管这在第一次发生时令人震惊),而是他们如何做到这一点的不断进步:最初是通过向人类专家学习,然后是自我学习,然后是从头开始自学游戏原理,最终产生单一系统,
这段对话来自 2014 年电影《机械姬》的早期场景,其中 Nathan 邀请 Caleb 判断 Nathan 是否成功创造了人工智能。1 强大的通用人工智能的成就长期以来一直吸引着我们的想象力,不仅因为它令人兴奋和担忧的可能性,还因为它为人类带来了一个新的未知时代。Stuart Russell 在 2021 年 BBC Reith 讲座“与人工智能共存”的开幕式上表示,“通用人工智能的最终出现 [将是] 人类历史上最大的事件。” 2 在过去十年中,一系列令人印象深刻的成果引起了公众对强大人工智能可能性的广泛关注。在机器视觉方面,研究人员展示了在某些情况下可以像人类一样甚至比人类更好地识别物体的系统。然后是游戏。复杂的策略游戏长期以来一直与高级智能联系在一起,因此当人工智能系统在国际象棋、雅达利游戏、围棋、将棋、星际争霸和 Dota 中击败最优秀的人类玩家时,全世界都注意到了。这不仅仅是人工智能击败了人类(尽管这在第一次发生时令人震惊),而是他们如何做到这一点的不断进步:最初是通过向人类专家学习,然后是自我学习,然后是从头开始自学游戏原理,最终产生了可以学习、玩游戏并获胜的单一系统