在应用于板球分析的计算机视觉领域中,分类击球镜头带来了巨大的挑战,要求细微的理解和分类。板球投篮的分类至关重要,因为它使玩家有效地评估,适应和执行他们的游戏计划,从而塑造比赛的结果。本文介绍了板球击球照片图像数据集(CBSID),这是一个新的基准数据集,其中包含2160个精心注释的板球镜头图像,这些板球拍摄了七个不同的类别。这项研究的核心目标是开发一个能够有效分类图像中板球击球的强大系统。为了解决这个问题,我们提出了一种基于视觉变压器的微调模型,专门适用于板球射击分类,称为板球击球射击视觉变压器(Shot-Vit)。我们提出的方法证明了出色的性能,在CBSID上实现了92.58%的验证精度。shot-Vit在板球射击分类精度中明显胜过建立的模型,例如VGG19,resnet50,i-alexnet和fit_b32,展示了视觉变压器在超过现有的深度学习体系结构方面的显着功能。视觉变压器具有通过自我注意的机制来捕获图像中的全球环境和远程依赖性的能力,从而实现了有效的特征提取和表示,传统模型可能难以实现。板球击球的准确分类对板球教练,球员发展和比赛分析具有深远的影响。它有可能改变培训方法,为球员和教练提供对击球技巧和策略的精确见解,从而为这项运动的整体进步做出了贡献。
肌电控制,在肌肉收缩期间生成的肌电图(EMG)信号来控制系统或设备,是一种有希望的方式,可实现对新兴无处不在的计算应用程序的始终可用控制。但是,由于用户之间的行为和生理差异,其历史上的广泛使用受到对用户特定机器学习模型的需求的限制。利用公开可用的612-用户EMG-EPN612数据集,这项工作消除了这一概念,表明如果没有特定用户的培训,则可以实现真正的零射击交叉用户肌电控制。通过采用离散的分类方法(即,将整个动态手势视为一个事件),在一组306个未见的用户(没有提供培训数据)的一组中,可以实现六个手势的分类精度为93.0%,与大多数EMG研究(通常仅使用10-20个用户相比),可以雇用强大的交叉控制。通过将结果组织成一系列的小型研究,这项工作提供了对离散跨用户模型的深入分析,以回答未知问题并发现新的研究方向。特别是,这项工作探讨了建立跨用户模型所需的参与者数量,转移学习对这些模型的影响以及代表性不足的最终用户人口统计数据在培训数据中的影响等。结果表明,大型数据模型可以有效地推广到新的数据集,并减轻历史上限制基于EMG的输入的常见混杂因素的影响。另外,为了进一步评估创建的跨用户模型的性能,创建了一个全新的数据集(使用相同的记录设备),其中包括已知的协变量因子,例如跨日使用和肢体位置可变性。
Actor-Critic方法在许多领域中实现了最新的性能,包括机器人技术,游戏和控制系统([1],[2],[3])。时间差异(TD)学习可能被认为是演员评论家的组成部分,而TD学习的更好界限通常是参与者 - 批评分析的成分。我们考虑强化学习中的政策评估问题:鉴于马尔可夫决策过程(MDP)和政策,我们需要估算本政策下每个州(预期的所有未来奖励总和)的价值。政策评估很重要,因为它实际上是许多其他算法(例如策略迭代和参与者批评)的子例程。政策评估的主要挑战是,我们通常不知道基本的MDP,并且只能与之互动,并且状态数量通常太大,迫使我们维持对状态值的真实向量的低维近似。我们将重点放在克服这组挑战的最简单类别的方法上,即具有线性函数近似的TD方法。这些方法试图维持低维参数,该参数会根据观察到的奖励和过渡不断更新,以维持跨州估计值的一致性。这些方法的收敛证明首先在[4]中给出。在本文中,我们重点介绍了策略评估的多代理版本:我们考虑具有同一MDP和相同政策副本的n个代理,但是MDP
以图像扩散模型的出色性能为动机,越来越多的研究人员努力将这些模型扩展到基于文本的视频编辑任务。然而,当前的视频编辑任务主要遭受高调成本与有限发电量之间的困境。与图像相比,我们猜测视频需要更多的限制来保留编辑期间的时间一致性。朝着这一目标,我们提出了夏娃,一种坚固而富的零射击方法。在深度图和时间一致性约束的指导下,EVE通过负担得起的计算和时间成本得出令人满意的视频编辑结果。更重要的是,认识到没有公开可用的视频编辑数据集进行公平比较,我们构建了一个名为ZVE-50数据集的新基准。通过全面的实验,我们验证了夏娃在绩效和效率之间取得令人满意的折衷。代码,数据集和视频编辑演示可在https://github.com/alipay/alipay/ant-multi-modal- framework/blob/ain/main/prj/eve上使用。
跨域少数射击语义分割(CD-FSS)旨在训练可以从不同域中分割具有一些标记图像的域类别的广义模型。以前的作品证明了特征转化在顾问CD-FSS中的有效性。但是,他们完全依靠支持图像进行特征转换,并且反复使用每个班级的一些支持图像很容易导致过度拟合并忽略了类内部外观差异。在本文中,我们提出了一个双重匹配的基于转换的网络(DMTNET)来解决上述问题。我们建议自我匹配转换(SMT),而不是完全依靠支持图像,以基于查询图像本身本身构建特定于特定的转换矩阵,以将特定于域特异性的查询特征转换为域。计算特定特定的转换矩阵可以防止过度拟合,尤其是对于元测试阶段,仅将一个或几个图像用作支撑图像来分割数百或数千个图像。获得了域 - 不足的特征后,我们利用了双关联构建(DHC)模块,以与Support图像的前景和背景之间的查询相关之间的超相关性,基于前景和背景图的前景和背景预测映射的产生和超级映射,并具有分为分段,以增强其分段。此外,我们提出了测试时间自我填充(TSF)策略,以更准确地自我调整看不见的域中的查询预测。代码可在https://github.com/chenjiayi68/dmtnet上找到。在四个流行数据集上进行的实验实验表明,DMTNET比最新方法实现了卓越的性能。
摘要。预先训练的视觉模型(VLMS)的出色概括能力使下游零镜头任务的微调VLM是流行的选择。尽管在基础类的专业性中取得了令人鼓舞的表现,但大多数现有的微调方法都遭受了新颖类的特征混乱,导致不满意的可转移性。为了解决这个问题,我们提出了一种称为基于及时的变分适配器(PVA)的分裂和争议方法,该方法通过分开基础和新样本来明确减少预测偏差。指定,我们设计了两个具有可学习的文本令牌的变异适配器,以使共享潜在空间中每种模态的潜在表示。一旦受过训练,我们就可以使用潜在特征的相似性度量,即将混乱任务转换为两个独立的样本(一个用于基本类别,另一个用于新颖的类别)。此外,为了提高新颖类的可传递性,我们通过残留连接进一步完善了具有全局特征的学习适配器的输出特征。我们对广义零射门学习和交叉传输的学习进行了广泛的实验,以证明我们的方法的优势,并在四个流行的基准上建立新的最先进的方法。
半导体价值链中的复杂性和巩固是由荷兰的ASML插图的,这是世界上几乎每个芯片制造商使用的光刻机器制造商。当一家芯片制造公司以1亿美元(USD)以北的价格从ASML购买一台光刻机器时,它将购买了一件非常复杂的设备,其中有超过400,000个零件来自“数千家公司的精心调整系统”。 10位分析师指出,ASML对全球光刻机器市场的80%至100%的捕获归功于该公司在供应链管理方面的高级技能和经验,这与首先投资了数十亿美元有关设计和开发机器的投资。11
半导体价值链中的复杂性和巩固是由荷兰的ASML插图的,这是世界上几乎每个芯片制造商使用的光刻机器制造商。当一家芯片制造公司以1亿美元(USD)以北的价格从ASML购买一台光刻机器时,它将购买了一件非常复杂的设备,其中有超过400,000个零件来自“数千家公司的精心调整系统”。 10位分析师指出,ASML对全球光刻机器市场的80%至100%的捕获归功于该公司在供应链管理方面的高级技能和经验,这与首先投资了数十亿美元有关设计和开发机器的投资。11
对象导航(ObjectNav)要求代理在看不见的环境中导航以找到查询对象。许多以前的方法试图通过依靠经过跨越或强化学习来解决此任务,在该学习中,它们在具有近距离对象的有限家庭数据集上进行了培训。然而,尚未解决两个主要挑战:了解自由形式的自然语言指令,要求开放式观察,并以零拍的方式推广到新环境。旨在解决这两个挑战,在本文中,我们提出了OpenFM- NAV,这是一个基于零照射对象导航的基于odel m ODEL M ODEL的框架。我们首先释放了大型语言模型(LLMS)的推理能力,以从满足用户需求的自然语言指令中提取拟议的观察。然后,我们利用大型视觉语言模型(VLM)的普遍性来积极地从场景中发现和脱离候选对象,建立多功能语义得分图(VSSM)。然后,通过对VSSM进行常识推理,我们的方法可以对场景进行有效的语言引导探索和剥削,并最终达到目标。通过利用基础模型的推理和概括,我们的方法可以理解自由形式的人类指示并在不同环境中进行有效的开放式零射门导航。在HM3D ObjectNAV基准上进行的广泛实验表明,我们的方法超过了所有指标上的所有强基础,证明了我们方法的有效性。1此外,我们执行真实的机器人演示,以验证我们方法对现实环境的开放定点性和普遍性。
射击的干净燃料和产品认识到,DOE和其他针对目标的燃料和化学品采取了各种不同的脱碳选择。可持续的航空燃料大挑战和由此产生的路线图指南DOE在航空排放和目标方面的策略,到2050年用可持续航空燃料取代100%的航空燃料。对于海上,铁路,o孔和碳氢化合物化学物质,除了使用可持续碳氢化合物的替代品替换外,还将继续采用其他脱碳途径。例如,在海上排放中,正在考虑使用氨,甲醇,氢,燃料电池和其他脱碳方法。设定了能量射击目标,同时认识到其中一些解决方案可能会补充能量大地的碳氢化合物替代品,并且这些扇区设置为50%的替代品。