Navitas 推出全球首款纯 GaN 和 SiC 新一代 8.5 kW 人工智能数据中心电源,符合 OCP 指南并符合 ORV3.0 标准。这款完整的 GaN 和 SiC 宽带隙解决方案可实现 12 kW 以上的高功率密度解决方案。
SiC 模块是迈向更节能未来的先锋。其独特的材料特性使设备能够在更高的电压和温度下工作,这意味着系统不仅更强大,而且更具弹性。这一影响深远,因为 SiC 技术正迅速成为各行各业构建下一代电力电子的基石。从一次充电即可行驶更远的电动汽车到以前所未有的效率运行的可再生能源系统,SiC 模块都是这些进步的核心。在深入研究 SiC 的众多优势时,我们将探索这项技术不仅仅是一种选择,而且对于那些希望定制和优化其电源解决方案以应对 21 世纪挑战的人来说是一种必需品的令人信服的理由。
抽象的乙酰胆碱(ACH)是人体中兴奋性神经递质之一。它是负责触发突触后神经元激活的最丰富的神经递质,导致兴奋反应。ach在各种生理过程中起着至关重要的作用,包括肌肉收缩,自主神经系统调节以及学习和记忆等认知功能。在这项研究中,基于WO 3纳米棒修饰的玻璃碳电极来制备电化学传感器,以检测ACH。WO 3纳米棒为ACH的电化学确定提供了极好的特性。所提出的传感器显示ACH的宽线性检测范围(0.1至400.0 µm)和低检测极限为0.025 µm。这些结果证明了传感器在检测这一重要神经递质的高灵敏度。此外,开发的传感器在实际样品中显示出良好的ACH测定能力。这项研究为电化学检测ACH提供了创新的策略,展示了纳米材料在高级感应技术开发中的潜力。
• 具有实时可变驱动强度的双输出驱动器 – ±15A 和 ±5A 驱动电流输出 – 数字输入引脚 (GD*),用于在没有 SPI 的情况下调整驱动强度 – 3 个电阻设置 R1、R2 或 R1||R2 – 集成 4A 有源米勒钳位或可选外部驱动器用于米勒钳位晶体管 • 初级侧和次级侧有源短路 (ASC) 支持 • 内部和外部电源的欠压和过压保护 • 驱动器芯片温度感应和过温保护 • 短路保护: – 对 DESAT 事件的响应时间为 110ns – DESAT 保护 – 最高 14V 的选择 – 基于分流电阻的短路 (SC) 和过流 (OC) 保护 – 可配置的保护阈值和消隐时间 – 可编程软关断 (STO) 和两级软关断 (2STO) 电流 • 集成 10 位 ADC – 能够测量电源开关温度、DC Link 电压、驱动器芯片温度、DESAT 引脚电压、VCC2 电压 –可编程数字比较器 • 高级 VCE/VDS 钳位电路 • 符合功能安全标准 – 专为功能安全应用而开发 – 提供文档以帮助符合 ASIL D 标准的 ISO 26262 系统设计 • 集成诊断: – 保护比较器的内置自检 (BIST) – 用于功率器件健康监测的栅极阈值电压测量 – INP 至晶体管栅极路径完整性 – 内部时钟监控 – 故障报警和警告输出 (nFLT*) – ISO 通信数据完整性检查 • 基于 SPI 的器件重新配置、验证、监控和诊断 • 150V/ns CMTI • 符合 AEC-Q100 标准,结果如下: – 器件温度等级 1:-40°C 至 +125°C 环境工作温度
和安全优势。第一个光学透视 HMD 由 Sutherland 在 20 世纪 60 年代提出 6 。从那时起,光学透视技术在军事 7-11 、工业 12,13 和消费电子应用 14-16 中不断得到探索。已经开发出各种方法来将图像从微型投影仪引导到观察者,将现实世界的视图与虚拟图像相结合 16,17 。早期的 HMD 光学组合器基于传统的轴向分束器,如谷歌眼镜 18-20 所示。然而,由于视场 (FOV) 和框架尺寸与光学元件的尺寸成正比,因此在性能和舒适度之间取得平衡会导致此类智能眼镜的 FOV 更小。为了实现更大的 FOV,使用离轴非球面镜的 HMD
稿件收到日期为 2024 年 6 月 20 日;接受日期为 2024 年 7 月 25 日。出版日期为 2024 年 7 月 31 日;当前版本日期为 2024 年 9 月 27 日。这项工作部分由波兰国家科学中心资助,协议编号为 OPUS 2019/33/B/ST3/02677;部分由波兰国家研究与发展中心资助,协议编号为 M-ERA.NET3/2021/83/I4BAGS/2022;部分由 M-ERA.NET3 通过欧盟“地平线 2020”研究与创新计划资助,协议编号为 958174;部分由波兰教育和科学部资助,项目编号为 0512/SBAD/2420。这封信的审阅由编辑 D. Shahrjerdi 安排。 (通讯作者:Tymoteusz Ciuk。)Tymoteusz Ciuk、Beata Sta´nczyk、Krystyna Przyborowska 和 Dariusz Czołak 就职于 Łukasiewicz 研究网络——微电子与光子学研究所,02-668 华沙,波兰(电子邮件:tymoteusz.ciuk@imif.lukasiewicz.gov.pl)。Corinne Nouvellon 和 Fabien Monteverde 就职于 Materia Nova,7000 Mons,比利时。Semir El-Ahmar 就职于波兹南理工大学物理研究所,61-138 Pozna´n,波兰(电子邮件:semir.el-ahmar@ put.poznan.pl)。本信中一个或多个图表的彩色版本可在 https://doi.org/10.1109/LED.2024.3436050 上找到。数字对象标识符 10.1109/LED.2024.3436050
这篇论文由 ScholarWorks@UARK 免费提供给您,供您开放访问。它已被 ScholarWorks@UARK 的授权管理员接受,并被纳入研究生论文和学位论文。如需更多信息,请联系 scholar@uark.edu、uarepos@uark.edu。
开尔文探针力显微镜是一种评估样品和探针尖端之间接触电位差的方法。除非使用具有已知功函数的参考标准(通常是块状金或高取向裂解热解石墨),否则它仍然是一种相对工具。在本报告中,我们建议采用光刻图案化、引线键合结构的形式来验证二维标准,该结构采用无转移 p 型氢插入准独立外延化学气相沉积石墨烯技术在半绝缘高纯度名义上轴上 4H-SiC(0001) 上制造。该特定结构的空穴密度为𝑝 𝑆 = 1.61 × 10 13 cm − 2,通过经典霍尔效应测得,其石墨烯层数为𝑁 = 1.74,该值是从椭偏角𝛹的分布中提取的,在入射角AOI = 50 ◦和波长𝜆 = 490 nm处测量,其功函数为𝜙 𝐺𝑅 = 4.79 eV,由特定𝑝 𝑆 和𝑁的密度泛函理论模型假定。按照该算法,结构和硅尖端之间的接触电位差在𝛥𝑉 𝐺𝑅 −Si = 0处得到验证。 64 V ,应该与𝜙 𝐺𝑅 = 4.79 eV 相关,并作为精确的参考值来计算任意材料的功函数。
碳化硅(SIC)设备以其提供高压,高电流和高温组件的能力而闻名,这使它们成为创建更节能系统的理想选择,例如电动汽车中使用的系统。这些设备可以承受高功率密度并在高温下运行,这对于创建具有最大行驶范围的电动汽车至关重要。通过在电动汽车系统中使用碳化硅设备,制造商可以创建更高效,更持久,更可靠的车辆。在电池系统中使用碳化硅会导致大量节省,因为随着时间的流逝,能量回收的损失较小。此外,它允许更高的频率和密度和更好的热管理。这些好处可能会对整体系统效率和有效性产生积极影响。硅碳化物在该行业中的小时水平和可靠性最高,使其成为电力转换的绝佳材料。