1杜布雷森大学药物化学系,匈牙利H-4032 DEBRECEN; elorincz01@gmail.com(E.B.L.); herczeg.mihaly@pharm.unideb.hu(M.H.); borbas.aniko@pharm.unideb.hu(A.B。); herczegh.pal@pharm.unideb.hu(p.h.)2迪克雷大学药学博士学校,H-4032 DEBRECEN,匈牙利3国家生物分子研究中心,Masaryk University,611 37 Brno,捷克共和国Brno; josef.houser@ceitec.cz(J.H.); lenka.malinovska@ceitec.muni.cz(L.M.); michaw@chemi.muni.cz(M.W。)4中欧理工学院,马萨里克大学,捷克共和国625 00 BRNO 5 BRNO 5 BRNO,MASARYK University科学系生物化学系,捷克共和国Brno 611 37; rievajova.martina@mail.muni.cz 6应用化学系,杜布雷森大学H-4032 DEBRECEN,匈牙利DEBRECEN; kuki.akos@science.unideb.hu 7 Rega医学研究所,Ku Leuven,B-3000 Leuven,Belgium; lieve.naesens@kuleuven.be 8 National Laboratory of Virology, University of P é cs, H-7624 P é cs, Hungary 9 HUN-REN–UD Molecular Recognition and Interaction Research Group, University of Debrecen, H-4032 Debrecen, Hungary * Correspondence: bereczki.ilona@pharm.unideb.hu
摘要:我们提出了一种受自然复杂机制启发的新型比色方法,能够选择性地确定具有高灵敏度的5-羟色胺。此方法利用了链接到金纳米颗粒(SA-Aunps)的唾液酸(SA)分子的固有结合亲和力。在5-羟色胺结合,sa-aunps骨料和Sa-unps吸光度的特征性红移后,也会发生剧烈的色彩变化(红色至蓝色),即使没有仪器也很容易观察到。提出的方法有效地消除了潜在干扰物种(例如多巴胺,肾上腺素,L-酪氨酸,葡萄糖胺,半乳糖,甘露糖和草酸)的干预措施。缺乏与5-羟色胺相关的与结构相关的前体L- tryptophan的变化,进一步证实了这种方法检测方法的高选择性。比色法具有宽的线性动态范围(0.05 - 1.0μm),检测的低极限(0.02μm)和快速响应时间(5分钟)。该方法的检测极限低于到目前为止报道的其他比色性羟色胺传感器。通过在处理后血浆中采用5-羟色胺回收测定法评估了所提出的方法在生物样品分析中的使用。回收率为90.5%至104.2%,显示出有希望的临床应用潜力。
糖蛋白和细胞表面上的糖脂。唾液酸通过与碳水化合物和蛋白质相互作用,在细胞之间进行通信,并充当病毒和细菌的细胞表面受体,在多种生理和病理过程中起作用。几项研究表明,由于其糖基化状态的变化,唾液酸在癌细胞上的异常模式。这种模式可能归因于肿瘤细胞中发生的各种生理和病理变化。在肿瘤中的高血压,其参与肿瘤生长,免疫逃避和摆脱凋亡途径,转移形成和治疗耐药性的逃脱都得到了很好的研究。方法:进行了PubMed搜索,并在2000年至2020年的不同研究中发表了文章,并进行了审查。在这里,我们讨论
唾液酸是九种碳糖,经常在脊椎动物细胞中的细胞表面以及某些类型的无脊椎动物和细菌的细胞中限制胶囊。唾液酸的九个碳主链可以在自然界中进行广泛的酶促修饰,并在C-4/7/8/9处尤其是在C-4/7/8/9处进行O-乙酰化。近年来,o-乙酰化的唾液酸的检测和分析已经采用了乳酸特异性(SOATS)和O-乙酰基酯酶(SIAES),分别鉴定并在哺乳动物细胞中添加和表征盐酸 - 乙酰基酯酶(SOATS)和O-乙酰酯酶(SIAES)(SIAES)(SIAES)(SIAES)(SIAES)(siaES),分别鉴定出和去除O-乙酰基组。这些进步现在使我们能够更完整地了解多样的O-乙酰化唾液酸的生物合成途径,以驱动遗传和生物化学模型细胞系和生物体的产生,并具有o-乙酰化的唾液酸表达的表达,以改变其角色,以使其在孔隙蛋白中脱离孔隙蛋白的良好性,并伴随着孔隙蛋白的良好性,并具有良好的发现,并具有良好的发现,并具有良好的发现,并具有良好的发现,并逐渐识别。此外,越来越多的研究将唾液酸O-乙酰化与癌症,自身免疫性和感染相关联,这为开发选择性探针和Soats and Siaes的抑制剂提供了理由。在这里,我们讨论了O-乙酰化唾液酸的生物合成和生物学功能的当前见解,并回顾了将这种修饰与疾病联系起来的证据。此外,我们讨论了针对不自然的O-乙酰化唾液酸的设计,合成和潜在应用的新兴策略,以及肥皂和SIAES的抑制剂,这些策略可能可以实现这种多功能唾液酸的治疗靶向。
唾液酸结合免疫球蛋白样凝集素 (Siglec) 受体与神经退行性过程有关,但唾液酸在生理性衰老中的作用仍未完全了解。我们研究了唾液酸生物合成所必需的葡萄糖胺-2-表异构酶/N-乙酰甘露糖胺激酶 (GNE + / ) 杂合子小鼠脑内唾液酸化降低的影响。我们证明 GNE + / 小鼠在 6 个月时不同脑区已出现唾液酸化降低、海马体突触减少、小胶质细胞树突状化减少,随后 12 个月时神经元丢失增加。转录组分析显示未发现促炎症变化,这表明在衰老过程中 GNE + / 小鼠的突触和神经元被固有的稳态免疫过程所清除。与补体 C3 缺乏的小鼠杂交挽救了早期发生的神经元和突触丢失以及小胶质细胞树突状化的变化。因此,糖萼的唾液酸有助于大脑稳态,并充当大脑先天免疫系统的识别系统。2020 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
唾液酸通常在哺乳动物细胞的糖脂中被发现为末端碳水化合物,是先天免疫系统的关键检查点抑制剂,尤其是中枢神经系统(CNS)。在小胶质细胞上表达的唾液酸结合型免疫球蛋白样凝集素(Siglecs)是通过识别完整的溶解酶来维持小胶质细胞稳态的关键参与者。精细平衡的唾液酸 - siglec系统可确保预防中枢神经系统中过度和有害的免疫反应。然而,溶解和SIGLEC受体功能障碍的丧失导致多种慢性中枢神经系统疾病。SIGLEC3 / CD33,SIGLEC11和SIGLEC14的遗传变异与神经退行性疾病(如阿尔茨海默氏病)有关,而siAllylltransferase ST8SIA2和SigleC4 / MAG已将精神疾病与精神病患者相关,例如Schizizoplenia,Biporlial and biporlial and biporal and biporal and siglec4 / mag。因此,在阿尔茨海默氏病动物模型和炎症引起的CNS组织损伤中,多氨酸和SIGLEC结合抗体的免疫调节功能已被实验剥削。虽然这些治疗方法的潜力显而易见,但在患者临床试验中,仅测试了靶向乙二醇或SIGLEC受体的几种疗法。在这里,我们概述了唾液酸 - siglec轴在神经变性和突触病的背景下塑造小胶质细胞激活和功能中所起的关键作用,并讨论靶向溶解溶性或siglecs的当前疗法的景观。
摘要细菌性阴道病(BV)是女性再生产地段的多数菌感染。bv的特征在于通过包括众所周知的gardnerella daginalis在内的多种厌氧菌替代与健康相关的乳杆菌物种。prevotella timonensis和prevotella bivia是在大量BV患者中发现的厌食症,但它们对疾病过程的贡献仍有待确定。定义BV中厌氧过度生长的特征是粘膜表面的依从性,并且在阴道分泌物中粘液降解酶(例如唾液酸酶)的活性增加。我们证明了timonensis,但没有强烈粘附于阴道和宫颈细胞的水平与阴道G. g。Timonensis基因组独特地编码了大量粘液降解酶,包括四种假定的诱导酶和两个假定的唾液酸酶PTNANH1和PTNANH2。酶测定表明,岩藻糖苷酶和唾液酸酶的活性在结合细胞链球菌和分泌的馏分中明显高于其他阴道厌食症。在感染测定中,蒂莫宁SIS有效去除了来自上皮糖蛋白的岩藻糖和α2,3和α2,6和α2,6-链接的唾液酸部分。重组表达的timonensis nanh1和nanh2从上皮表面切割α2,3和α2,6-连接的唾液酸,而在抑制剂上可以阻止timonensis通过抑制剂来阻断唾液酸。我们的结果强调了了解不同厌氧菌在BV中的作用的重要性。这项研究表明,Timonensis具有不同的毒力相关特性,其中包括初始粘附和在阴道上皮粘膜表面粘蛋白降解的高能力。
摘要:人类唾液 - 酸性结合免疫球蛋白样凝集素-9(SIGLEC-9)是在几个免疫细胞上表达的糖免疫检查点受体。SIGLEC-9与含糖酸(唾液聚糖)的唾液酸的结合已充分记录,以调节其作为抑制受体的功能。在这里,我们首先使用良好的三维核磁共振(NMR)方法分配了SIGLEC-9 V-SET结构域(Siglec-9 D1)的氨基酸骨架。然后,我们将溶液NMR和分子动力学模拟方法结合在一起,以解释Siglec-9与天然配体α2,3和α2,62,6 siAllyl乳糖胺(SLN)(SLN)(SAIALYL LEWIS X(SALEX)(SALEX)和6-O硫的分子细节,并与两个固定型结合,并将其与两个固定型结合。正如预期的那样,在规范的唾液酸结合位点的F和Gβ链之间容纳了neu5ac。在NEU5AC的C9位置添加杂型支架9 N -5-(2-甲基噻唑-4-基)噻吩磺酰胺(MTTS)会产生与位于Siglec-9的N-末端区域的疏水性残基的新相互作用。同样,在neu5ac的C5位置添加芳族取代基(5- n-(1-二苯基 - 1 H-1 H- 1,2,3-三唑-4-基)甲基(BTC))稳定在SigleC-9中存在长长的B'-c loop的构象。这些结果暴露了负责SIGLEC-9对这两个改良的唾液聚糖的增强的亲和力和特异性的基本机制,并阐明了针对Siglec-9的下一代修改后的Sialoglycans的合理设计。■简介
图1:新生儿GBS感染中肺损伤的死亡率和持续性增加。40图2:肺部炎症和GBS清除的延迟动力学在新生儿GBS肺炎中肺泡巨噬细胞清除率................................................................................................................................................................................................................................................................................................................................................................................................................................................. Figure 4: Developmental Maturation of Lung Myeloid Siglec Expression ............................ 46 Figure 5: Developmental Immaturity of AM Siglec-Sialic Acid Detection Contributes to Neonatal GBS Susceptibility ................................................................................................... 48 Figure 6: Sn Expression Declines Over Time Following GBS Infection ............................... 51 Figure 7: The Sia-Siglec-E Interaction Mediates Decreased Sn Expression Following Infection ................................................................................................................................... 53 Figure 8: Siglec1 is Regulated by the STAT Pathway and is Differentially Accessible in the Adult .................................................................................................................................. 55 Figure 9.RG, IFN- , Did Not Increase Sn Expression on the First Day of Life .................. 57 Figure 10: Sialic Acid is Not Expressed in the Developing Fetal Lung ................................. 59