仅用于S'Poreans&PR的资金链接:https://tinyurl.com/2p88c6ab课程教学大纲:A:设置六个Sigma管理程序目标:研究要控制的系统(工厂)并获得有关控制目标的初始信息。1。在必要时对系统进行建模并简化模型。2。分析结果模型;确定其特性。3。确定要控制哪个变量(受控输出)。5。在过程控制系统(DMAIC和SPC工具,Kaizen)中应用六个Sigma工具B:设置六个Sigma过程控制性能指标目标:能够设置流程控制性能指标。1。指标的好处?2。内部审计指标的性能?3。强大的内部审核的性能?4。符合性能审核。5。将五个关键的内部审计计划指标应用于成本节省。6。将六种Sigma方法用于控制性能指标。7。应用项目用于精益六西格玛(绿带)Mgt
摘要 - 与其他ADC体系结构相比,Sigma-Delta类似于数字转换器(ADC)以高分辨率而闻名。它们由Sigma-Delta Mod-ulator和数字拆卸过滤器组成。这项工作重点是离散时间Sigma-Delta调制器(DT-SDMS)的高级设计,而使用MATLAB分析了一阶和二阶调制器的设计和实现。使用反馈(CIFB)结构中的集成器的级联对每个调节器进行了完整的性能分析。值得一提的是,我们的研究重点是中等带宽(BW)应用程序,包括此类音频应用。此外,我们针对低压操作。这项工作正处于早期阶段,因此仅研究一阶和二阶调节器。这项工作认为BW的BW为24 kHz,采样频率为6.144 MHz,而过采样(OSR)为128。索引项 - Sigma-Delta调制器,Sigma-Delta ADC,DT-SDM CIFB结构。
摘要 HVAC(供暖、通风和空调)系统的功耗是迪拜 132 kV 变电站运行的关键因素。本摘要研究了导致 HVAC 系统能耗的各种因素,包括冷却负荷、设备效率和运行时间。该研究还探讨了降低功耗和提高能源效率的策略,例如升级设备、优化系统控制和使用可再生能源。本摘要旨在通过分析迪拜 132 kV 变电站 HVAC 设备的功耗,提供有关如何提高变电站运行能源效率的见解。本报告将说明和展示如何将 DMAIC 流程实施到潜在案例研究中。数据不是实际的,而是估计的,因为报告的数据是机密的,并且旨在展示如何实施 DMAIC 流程。
摘要:与糖尿病相关的认知功能障碍(DACD)的患病率增加到13.5%。痴呆症是最严重的DACD,是糖尿病患者的第二大死亡原因。因此,需要紧急探索DACD放慢或停止其进展的潜在机制。Given that the sigma-1 receptor (Sig-1R), a chaperone protein located in the endoplasmic reticulum (ER)-mitochondrion contact membranes to regulate ER stress (ERS), is associated with cognitive outcomes in neurodegenerative diseases, this study aimed to investigate the role of astrocytic Sig-1R in DACD and its underlying mechanism.在这里,我们检查了来自不同浓度的葡萄糖和处理的原代星形胶质细胞的ER和补体组件3/3A(C3/C3A)的水平。随后,将HT22神经元培养在不同的星形胶质细胞条件培养基中,并检测到突触蛋白的表达。我们构建了1型糖尿病(T1DM)模型,以评估突触和认知功能变化的星形细胞SIG-1R机制。在体外,高葡萄糖浓度下调的Sig-1r和星形胶质细胞中的ERS加重,导致突触降低。Pre-084,一种高级和选择性Sig-1r激动剂,抑制了星形胶质细胞和补体级联反应并恢复了突触损伤,而Sig-1R拮抗剂则显示了相反的结果。C3a受体拮抗剂(C3ARA)可以模仿084年前的影响并发挥神经保护作用。在体内,084年前大大降低了用T1DM的小鼠中的ER-Mitochrion接触,ERS的激活和C3/C3A分泌。此外,在084和C3ARA治疗组中,用T1DM小鼠的突触损失和神经行为功能障碍均不太明显。这些发现表明SIG-1R激活减少了星形胶质细胞ER-线粒体接触,ERS激活和补体介导的T1DM中的突触损伤。这项研究提出了治疗DACD的机制和潜在治疗方法。
2 • 四个独立可编程数字滤波器 AMC1210 是一款四通道数字滤波器,专为电机控制应用中的电流测量和旋转变压器位置解码而设计。每个输入都可以接收独立的 delta-sigma (ΔΣ) 调制器位流。位流由四个可单独编程的数字抽取滤波器处理。AMC1210 还提供灵活的接口和全面的中断单元,允许定制数字功能和即时数字阈值比较,以进行过流监控。
在疫情初期,当人们最关心的问题之一是确保迅速增加的 COVID-19 病例得到及时治疗时,Sigma-i 探索了使用 D-Wave 的混合量子计算平台来管理日本各地患者的运输。这是一个复杂的多因素问题,必须考虑患者的位置、与最近的隔离地点或医疗机构的距离以及新患者的可用容量——这是保护医务人员和其他患者安全的关键考虑因素。Sigma-i 首席执行官 Masayuki Ohzeki 表示:“这是一个使用量子退火机的混合功能考虑大规模问题的例子。”该公司还探索了其他与公共卫生相关的挑战,例如如何管理各个企业的客户预约以防止过度拥挤。
Sigma-delta 调制在高分辨率 A/D 和 D/A 转换器中发挥着重要作用。转换过程中可实现更高的 SNR 水平,因此更适合用于音频 CD 格式。其在无线技术中发挥着重要作用,例如长期演进高级版 (LTE-Advanced)、IEEE802.11ac、GSM 和 CDMA 等,这些技术需要带宽大的高速 ADC,同时降低总体成本并减少由毛刺引起的谐波失真 [1- 6]。其他应用包括仪器仪表、地震活动测量、语音、视频、ISDN、数字蜂窝无线电、频率合成器、色谱分析和生物医学应用 [7- 8]。A/D 和 D/A 转换过程中会产生量化噪声,导致信号重建不正确 [9]。Sigma-delta 调制器利用噪声整形技术,并引入过采样,从信号带宽中去除噪声并将其传输到更高的频率区域 [10]。
免疫和神经胶质细胞在慢性疼痛中起关键作用。因此,从专门从神经元角度开始对神经递质的药理调节可能不足以进行充分的疼痛管理,并且可能需要对神经元与其他细胞类型之间的复杂相互作用进行调节,以成功缓解疼痛。在本文中,我们回顾了当前的科学证据,证明了Sigma-1受体在炎症过程中免疫系统和神经系统之间的通信以及该受体对周围和中央神经炎症的影响。考虑了几种病理疼痛的实验模型,包括周围和中枢神经性疼痛,骨关节炎和癌症疼痛。Sigma-1受体抑制作用可预防多种疼痛模型中的中心(巨噬细胞浸润到背根神经节中)和中心(小胶质细胞和星形胶质细胞的激活)神经炎症,并增强免疫驱动的外周外周围的阿片性镇痛症,使疼痛的细胞在痛苦的炎症过程中受到抗衡性,使外周置换症。因此,Sigma-1拮抗剂可能构成一类新的镇痛药,其在几种疼痛疾病中具有未经先验的作用机理和潜在效用。
六西格玛设计 - 必然的诞生 六西格玛设计 (DFSS) 确实是一门不断发展的学科。DFSS 源于一项运营业务需求 - 需要将产品质量提升到 4.5 西格玛障碍之外,而这一障碍通常是由于产品的基础设计无法支持更高质量的性能而产生的。为了实现更高的质量水平,人们认识到,彻底重新思考设计 - 从而导致重新设计 - 是必不可少的。六西格玛的早期实践者清楚地认识到,统计问题解决过程(该过程通常称为 DMAIC - 一个缩写词,总结了定义、测量、分析、改进和控制的五个步骤)需要进行调整以服务于该产品开发的应用。此外,很明显,这种方法并不适合“一刀切”的过程描述。需要进行定制以适应商业环境、企业文化、法规遵从性要求、行业特定规范,并且 DFSS 需要集成到新产品开发或产品创建过程中,以用于非常不同的应用(例如,硬件、软件和服务的设计)。或许是迫切的业务需求和不明确的操作定义让六西格玛成为企业领导者的首要考虑因素,同时又让他们感到沮丧,因为顾问和学者支持社区中的思想领袖无法提供更好的指导。本书的目的 本书的目标是广泛的 - 它旨在为商业领袖建立 DFSS 的全面概述。本书寻求在平民主义书籍(最终只会起到鼓舞人心的作用)和详细教科书(针对实施者和工具用户,但会让读者沉迷于其细节)之间取得平衡。它还试图填补以前关于这个主题的书籍 1 中存在的空白,有目的地关注其目标客户,即需要了解 DFSS 主题的商业领袖,并提供连贯、全面的手稿来阐明 DFSS 概念,从而为有兴趣探索这些改进领域的组织指明方向。这本书的根源在于