背景 2023 年初,国际航空公司飞行员协会联合会 (IFALPA) 发布安全通知,警告客机太平洋地区军舰可能干扰全球导航卫星系统 (GNSS)。 1 此后不久,澳航公开承认其飞机遭受了无线电干扰和 GPS 干扰,“据报道来自亚太地区的中国军舰”。 2 在其他地方,由于乌克兰持续入侵,数万架飞机受到影响,许多航班被取消, 3 原因是 GPS 干扰激增。 4 预计此类干扰卫星信号的事件将增加,并对航空安全构成重大挑战。 5 此外,鉴于地缘政治紧张局势加剧,干扰空间系统的运行将增加不信任、误解和误判, 6 并危及国际和平与安全。重要的是,政府、太空运营商和广大公众要意识到太空信号中断可能造成的后果,以及可以阻止此类行为的法律框架。
必须注意,这些方程是强烈的非线性。因此,与本示例相比,使用更细的网格或使用更高的元素顺序(尤其是在这样的完整3D模型中),以获取有关感兴趣的时间间隔具有一定程度可靠性的结果。这对于解决Ginzburg – Landau方程尤其重要,该方程描述了本质上混乱的现象。它们对初始值的扰动高度敏感,并且在时间依赖性解决方案过程中与数值错误相似。我们建议将四阶Hermite元素用于金茨堡 - 兰道方程。
图1的概述。a,我们的系统将RF信号从胸部反射为输入并输出实时IBI,然后将其用于诊断心脏病。b,本文使用的RF设备的示意图爆炸视图。c,我们的系统由三个组成部分组成:信号选择,节拍频率模式提取和HRV估计。首先,我们引入了信号选择算法,以选择具有丰富心跳信息的体素点。然后,我们将信号分解为各种频率组件,并使用高频组件获得节拍频率模式。最后,我们从模式中提取心跳峰来计算HRV。d,在两种情况下评估了拟议的系统:临床场景和日常生活情况。e,对拟议的系统进行了三个任务的评估,包括在大规模临床环境中监测HRV,在大规模临床方面诊断心脏病,并在长期日常生活情况下监测HRV。
摘要:近几十年来,许多不同的政府和非政府组织将测谎用于各种目的,包括确保犯罪供词的真实性。因此,这种诊断是用测谎仪来评估的。然而,测谎仪有局限性,需要更可靠。这项研究介绍了一种使用脑电图 (EEG) 信号检测谎言的新模型。为实现这一目标,我们创建了一个包含 20 名研究参与者的 EEG 数据库。本研究还使用六层图卷积网络和 2 型模糊 (TF-2) 集进行特征选择/提取和自动分类。分类结果表明,所提出的深度模型可以有效区分真话和谎言。因此,即使在嘈杂的环境中 (SNR = 0 dB),分类准确率仍保持在 90% 以上。所提出的策略优于当前的研究和算法。其卓越的性能使其适用于广泛的实际应用。
睡眠是通过记录各种方式来评估一种复杂的生理过程。我们从14,000多个参与者中策划了一个大型的多模式睡眠记录的大型多摄影数据集。掌握了这个广泛的数据集,我们开发了SleepFM,这是第一个用于睡眠分析的多模式基础模型。我们表明,与标准的成对构造学习的表示相比,一种新颖的对比学习方法可以显着证明下游任务绩效。A logistic regression model trained on SleepFM 's learned embeddings out- performs an end-to-end trained convolutional neu- ral network (CNN) on sleep stage classification (macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered breathing de- tection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61)。值得注意的是,从90,000名候选人中获取其他响应的记录剪辑,学到的嵌入在检索其他方式的记录剪辑方面达到了48%的平均准确性。这项工作展示了整体多模式睡眠模型的价值,以完全捕获睡眠记录的丰富性。SleepFM是开源的,可在https://github.com/rthapa84/sleepfm-codebase上找到。
睡眠是通过记录各种方式来评估一种复杂的生理过程。我们从14,000多个参与者中策划了一个大型的多模式睡眠记录的大型多摄影数据集。掌握了这个广泛的数据集,我们开发了SleepFM,这是第一个用于睡眠分析的多模式基础模型。我们表明,与标准的成对构造学习的表示相比,一种新颖的对比学习方法可以显着证明下游任务绩效。A logistic regression model trained on SleepFM 's learned embeddings out- performs an end-to-end trained convolutional neu- ral network (CNN) on sleep stage classification (macro AUROC 0.88 vs 0.72 and macro AUPRC 0.72 vs 0.48) and sleep disordered breathing de- tection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs 0.61)。值得注意的是,从90,000个候选者中检索模态剪辑对时,学到的嵌入在检索模态剪辑对方面具有48%的平均准确性。这项工作展示了整体多模式睡眠建模的价值,以完全捕获睡眠记录的丰富性。SleepFM是开源的,可在https://github.com/rthapa84/sleepfm- codebase上找到。
摘要 :传统脑机系统复杂、昂贵,情绪分类算法缺乏对脑电信号不同通道间内在关系的表征,准确率还有提升空间。为降低脑电研究门槛,充分利用多通道脑电信号中蕴含的丰富信息,提出并实现一个简便易用的脑机系统,用于快乐、忧伤、悲痛、平静四种情绪的分类。该系统采用卷积注意机制与完全预激活残差块的融合,即基于注意卷积的预激活残差网络(ACPA-ResNet)。在硬件采集和预处理阶段,我们采用ADS1299集成芯片作为模拟前端,利用ESP32单片机对脑电信号进行初步处理。数据通过UDP协议无线传输到PC机进行进一步的预处理。在情绪分析阶段,ACPA-ResNet能够自动从脑电信号中提取和学习特征,通过学习时频域特征实现对情绪状态的准确分类。ACPA-ResNet在残差网络的基础上引入注意力机制,自适应地为每个通道分配不同的权重,使其在空间和通道维度上关注更有意义的脑电信号,同时避免了深度网络架构带来的梯度弥散和爆炸问题。经过对16名受试者的测试,系统实现了稳定的脑电信号采集和传输。新网络显著提高了情绪识别的准确率,平均情绪分类准确率达到95.1%。
摘要:随着新卫星数量的急剧增加,全面的太空监视变得越来越重要。因此,高分辨率逆合成孔径雷达 (ISAR) 卫星成像可以提供对卫星的现场评估。本文表明,除了经典的线性调频啁啾信号外,伪噪声信号也可用于卫星成像。伪噪声传输信号具有非常低的互相关值的优势。例如,这使得具有多个通道的系统可以即时传输。此外,它可以显著减少与在同一频谱中运行的其他系统的信号干扰,这对于卫星成像雷达等高带宽、高功率系统尤其有用。已经引入了一种新方法来生成峰值与平均功率比 (PAPR) 与啁啾信号相似的宽带伪噪声信号。这对于发射信号功率预算受到高功率放大器严格限制的应用至关重要。本文介绍了产生的伪噪声信号的理论描述和分析,以及使用引入的伪噪声信号对真实空间目标进行成像测量的结果。
在复合材料(例如纤维金属层压板(FML))中检测并表征隐藏的损害仍然是一个挑战。引导的超声波(GUW)或X射线影响通常用于检测这些损害,但它们的解释仍然存在,在非破坏性测试(NDT)和结构健康监测(SHM)中也是如此。数据驱动的预测指标模型可以检测与GUW时间相关信号的结构中的损害,但是实验训练数据缺乏差异,统计强度和超参数空间的质量覆盖率。通常会经历心理数据缺乏目标参数的基础真理注释。综合数据通常是创建强大而广义的损害预测模型的唯一解决方案。可以使用基于模型,模型辅助或无模型方法生成合成传感器数据。然而,通过应用有限元方法或求解字段方程式通过数值计算的GUW信号表明,由于过多的约束和简化,尤其是在非同质的材料,复合材料和层板的情况下,由于过多的约束和简化而显示出差的现实统计。数据驱动的生成模型的最新发展,例如生成对抗(神经)网络(GAN)[1],通常是由大量生成过程驱动的,包括确定性样式矢量以生成特定信号数据[2] [2],确定损坏大小,位置,位置,定位,传递器位置,材料,材料,材料,材料,材料,材料,材料。这些新体系结构旨在通过使用
可以使用调幅激光在 MEMS 麦克风的输出端生成虚假但相干的声学信号。虽然这种漏洞会对信任这些麦克风的网络物理系统的安全性产生影响,但这种影响的物理解释仍然是个谜。如果不了解导致这种信号注入的物理现象,就很难设计出有效可靠的防御措施。在这项工作中,我们展示了热弹弯曲、热扩散和光电流产生机制在多大程度上被用于将信号注入 MEMS 麦克风。我们为每种机制都提供了模型,开发了一种程序来经验性地确定它们的相对贡献,并强调了对八种商用 MEMS 麦克风的影响。我们通过使用几种激光波长和一个真空室的精确设置来隔离每种机制来实现这一点。结果表明,麦克风上的注入信号取决于入射光的波长,其中长波长(例如 904 nm 红外激光)利用 ASIC 上的光电效应,而短波长(例如 450 nm 蓝色激光)利用振膜和周围空气上的光声效应。根据这一理解,我们为未来的抗激光麦克风设计提出了建议,包括改进球顶应用、减少 MEMS 结构内的材料不对称性,以及添加简单的光或温度传感器以进行注入检测。基于根本的因果关系,我们还指出了具有与 MEMS 麦克风相似特性的其他传感器中可能存在的漏洞,例如传统麦克风、超声波传感器和惯性传感器。