在行星表面的硅酸盐岩石的风化可以从大气中划出CO 2,以最终在行星内部埋葬和长期存储。这个过程被认为是对碳酸盐硅酸盐循环(碳循环)的基本负反馈,以维持地球上的克莱门特气候和潜在的温带系外行星。我们实施热力学,以确定风化速率是表面岩性(岩石类型)的函数。这些速率提供了上限,允许估计调节气候的最大风化速率。该建模表明,在给定岩石而非单个矿物质中矿物组合的风化对于确定行星表面上的风化速率至关重要。通过实施流体传输控制方法,我们进一步模拟了化学动力学和热力学,以确定受地球大陆和海洋壳构造及其上层岩石的启发的三种岩石的风化速率。我们发现,类似大陆壳的岩性的热力学风化速率比海洋壳的岩性特征低约一到两个数量级。我们表明,当CO 2二压压力降低或表面温度升高时,热力学而不是动力学会对风化产生强大的控制。在动力学和热力学上有限的风化状态取决于岩性,而供应限制的风化与岩性无关。我们的结果表明,热力学有限的硅酸盐风化的温度敏感性可能会激发对碳循环的正反馈,在这种情况下,随着表面温度的增加,风化速率降低。
沉积过程的一种非常特殊的情况是所谓的外延沉积,或者只是外延。该专业局部旨在将材料沉积到单晶模板上,生长为单晶层。半核心设备制造链中的第一步之一是在空白硅晶片上沉积外延硅。这是在外交过程中完成的。经常运行这些过程,一次仅处理一个晶圆(即单个晶圆处理)或少数数字(即多窃听或迷你批次)。
DR。 Mauro Cesar terence -CTO毛罗博士拥有Presbiteriana Mackenzie大学(UPM)的化学学位,博士学位,博士学位。以及圣保罗大学的核技术博士后。 他是UPM的教授25年,在那里他协调了材料工程和纳米技术的研究生课程。 他的研究着重于聚合物,电离辐射,纳米材料(石墨中的石墨烯和氧化石墨烯)和材料表征。 他参与了该项目的创建,并且是UPM的MackGraphe(石墨烯和纳米材料研究中心)的成员。。DR。 Mauro Cesar terence -CTO毛罗博士拥有Presbiteriana Mackenzie大学(UPM)的化学学位,博士学位,博士学位。以及圣保罗大学的核技术博士后。他是UPM的教授25年,在那里他协调了材料工程和纳米技术的研究生课程。他的研究着重于聚合物,电离辐射,纳米材料(石墨中的石墨烯和氧化石墨烯)和材料表征。他参与了该项目的创建,并且是UPM的MackGraphe(石墨烯和纳米材料研究中心)的成员。他参与了矿业项目Noovamineração和AquanitásHolding。此外,毛罗(Mauro)还从CNPQ - 巴西获得了他对技术发展和创新的贡献。
Arrowsmith North 硅砂项目是开发硅砂矿的提案。该提案位于西澳大利亚中西部地区,距珀斯西北偏北约 270 公里,距埃尼巴西北 35 公里。该提案的提议者是 VRX Silica Limited。该提案包括硅砂的连续块状开采、矿山供料厂的开发、可移动地面输送机、管道、加工厂、库存、淡水供应孔、通道、堆放、管理、蓄水和相关基础设施,包括燃气发电站、通讯设备、办公室、车间和其他堆放区。连接矿山与 Brand 高速公路、淡水供应孔和水管道的通道将位于通道开发范围内;所有其他基础设施都将位于矿山开发范围内。产品将通过公路运输到杰拉尔顿港,然后出口到国际市场。矿山开发范围和扰动足迹为 292.6 公顷,通道开发范围为 60.4 公顷,扰动足迹为 6.5 公顷。该提案将分阶段实施,在项目 30 年的生命周期内同时进行逐步清理、采矿和修复。
以其独特的特性而闻名,例如较小的导热率,高孔隙率和最小的电介质常数,Aerogels引起了各种应用的关注,尤其是在纺织品中。硅胶以其出色的热隔热能力而闻名,由于其低密度以及高热和声学绝缘性能,因此对传统隔热材料提供了潜在的改进。涉及硅烷氧化物的水解和冷凝的溶胶 - 凝胶过程,用于合成二氧化硅气凝胶,然后进行超临界干燥以保留其多孔结构。最近的进步探索了将二氧化硅气凝胶掺入纺织品和纤维中,以增强其热绝缘层,同时解决与耐用性和成本相关的挑战。的方法,例如湿反应旋转,同轴湿旋和静电纺丝,以生产具有不同特性的气冰纤维。例如,硅胶纤维已用于复合织物中,以提高柔韧性和机械强度,同时保持高隔热性能。还研究了带有硅胶的涂料纺织品,以创建轻质,高性能的服装热绝缘材料。此外,通过将气凝胶整合到纤维底物中产生的硅胶毯为工业和航空航天应用提供了有效的绝缘层。最近的研究进一步凸显了生产具有针对特定应用(例如防热和水分管理)的特性量身定制特性的基于硅胶的织物的进步。总体而言,正在进行的研究旨在优化气凝胶材料,以在纺织品和保护服装中进行更广泛的使用,从而应对性能和成本效益挑战。
刺激性响应性的“智能”材料可以积极响应外部田地并实时改变其微观或纳米结构,这是灵活显示器中未来技术的基础[1-3],生物传感器[4],有机光发射二极管[5,6]和薄膜膜片摄影膜片呈现图形细胞[7-9]。这些结构响应可以导致物理性质的显着增强,例如光反射率[10-12],热电传导率[13-15]或机械强度[14,15],打开了越来越复杂的应用。热响应聚合物溶液是响应式材料的一个例子,这些材料显示出随温度变化而显示出巨大的微结构响应。表现出较低临界溶液温度(LCST)的聚合物由于溶解度恶化而随着温度的增加而经历构象变化。高于此解散温度,发生宏观相分离。最彻底研究的热响应聚合物溶液之一是水(N-异丙基丙烯酰胺)(PNIPAM)[16] [16],其在接近体温(〜32°C,依赖于聚合物特性)的LCST附近。
环状二核苷酸(CDNS)是干扰素基因(STING)途径激动剂的一种刺激剂,已显示出令人鼓舞的结果,可引起针对癌症和病毒感染的免疫反应。然而,常规CDN的次优型药物样特性,包括其短体内半衰期和细胞渗透性差,会损害其治疗功效。在这项研究中,我们开发了一种锰 - 硅纳米平台(MNO X @HMSN),从而通过与Mn 2+协同作用来增强CDN的佐剂效应,以供癌症和SARS-COV-2疫苗接种。MNO X @HMSN具有大室子孔与CDN和肽/蛋白质抗原有效共同载体。mno X @HMSN(CDA)放大了刺激途径的激活,并增强了I型干扰素和其他促炎细胞因子的产生
介孔二氧化硅纳米颗粒(MSN)由于其特性和应用多样化,特别是在纳米医学中引起了极大的关注。MSN的独特特性,例如其高表面积,可调孔径和多功能表面化学,使其成为各种生物医学应用的理想候选者。本综述旨在详细了解MSN,从合成和表征到其在生物医学中的多功能应用,强调其在推进医疗保健技术方面的巨大潜力。全面讨论了MSN的合成方法,强调了溶剂,碱基,碱性浓度和模板表面活性剂等参数对纳米结构的大小和形状的影响。讨论了不同类型的MSN,包括MCM-41,SBA-15,KIT-6和空心MSN,以及它们的合成协议和独特的特征。该评论还涵盖了各种光谱技术,例如XRD,XPS,FTIR,
摘要:垂直有序的介孔二氧化硅膜(VMSF)是由超毛孔和超薄垂直纳米渠道组成的一类多孔材料,它们在电分析传感器和分子分离的区域具有吸引力。然而,VMSF很容易从碳纤维电极中掉下来,从而影响其广泛的应用。在此,氮化碳纳米片(CNN)作为粘合剂层,可在玻璃碳电极(GCE)上稳定VMSF生长。CNN可以与VMSF的硅烷醇基团共价结合,从而有效地促进了VMSF在GCE表面上的稳定性。受益于VMSF的许多开放纳米孔,用碳水化合物抗原15-3(CA15-3)特异性抗体修改VMSF外表面,可以通过硅胶内部硅含量进行电化学探针的目标传输,从而通过硅胶内部降低敏感性检测到1000的nosion nanochnels,从0.47 mu/mL的检测极限。此外,提出的VMSF/CNNS/GCE免疫传感器能够高度选择性,准确地确定尖峰血清样品中的Ca15-3,该样品提供了一种简单有效的电化学策略,可在复杂的生物学标本中检测各种实用生物标志物。
DOI: https://dx.doi.org/10.30919/es1214 A Brief Review on the Preparation and Application of Silica Aerogel Junting Lei, 1 Shuaimin Zheng, 1 Ziyuan Han, 1 Yutao Niu, 2 Duo Pan, 1,* Hu Liu, 1 Chuntai Liu 1 and Changyu Shen 1 Abstract The unique features of silica气凝胶,例如其高特异性表面积,低密度(95%的空气),疏水性,低导热率和光学透明度,引起了科学和技术社区的极大关注。使用“ Sol-Gel”技术生产二氧化硅气凝胶,这是一种可靠的方法,其中包括前体制备,衰老和干燥。由于其显着的整体特性,硅胶在高级技术和其他各种领域中具有多种潜在应用,例如热绝缘,吸收声音吸收,吸附,阻燃,传感和催化。本综述主要侧重于二氧化硅气凝胶的生产和利用。最初的重点是分析制备程序的进展,然后对当前普遍的准备方式进行探索和评估。随后,考虑了其独特的特征,进行了分析以探索各种应用领域中硅胶的潜力。最后,提供了对二氧化硅气凝胶未来开发路径的全面分析,以及一些提高制造过程的建议。
