模拟研究被广泛用于评估心理学统计方法的性能。但是,模拟研究的质量在其设计,执行和报告方面可能有很大差异。为了评估心理学中典型的模拟研究的质量,我们回顾了2021年和2022年发表在心理学方法,行为研究方法和多元行为研究中的321篇文章,其中100/321 = 31.2%报告了一项模拟研究。我们发现,许多文章没有提供有关研究的关键方面的完整透明信息,例如模拟重复的数量,蒙特卡洛不确定性估计值或代码和数据以复制模拟研究的理由。为了解决这个问题,我们提供了ADEMP的摘要(目的,数据生成机制,估算和其他目标,方法,绩效指标)的设计和报告框架来自Morris,White和Crowther(2019)适应了心理学的模拟研究。基于此框架,我们为研究人员提供了ADEMP-PREREG,这是一个分步模板
组合脑电图和fMRI允许整合精细的空间和准确的时间分辨率,但如果实时执行以实现神经反馈(NF)循环,则会引起许多挑战。在这里,我们描述了在运动成像NF任务中同时获得的脑电图和fMRI的多模式数据集,并补充了MRI结构数据。这项研究涉及30名健康志愿者接受五次培训。我们在以前的工作中展示了同时EEG-FMRI NF的潜力和优点。在这里,我们说明了可以从该数据集中提取的信息的类型并显示其潜在用途。这代表了NF的EEG和fMRI的第一个同时记录之一,在这里我们提出了第一个开放访问BI-MODAL模式NF数据集,该数据集整合了EEG和FMRI。我们认为,这将是(1)多模式数据集成的进步和测试方法,(2)提高所提供的NF质量,(3)改善在MRI下获得的EEG的方法论,并(4)使用多模式信息研究了运动象征的神经标志物。
引言在海面上的Lagrangian轨迹模拟对于各种应用领域非常重要,包括监测塑料和碎屑运动[Maximenko等,2012],研究Algae和Plankton Dynamics [Son等,2015],或轨迹预测对搜索和救援作业的搜查至关重要[Breivik et al。此外,对拉格朗日漂移的研究允许评估海洋数值模型准确地代表小规模动力学的能力[Barron等,2007; Botvynko等,2023]。尽管如此,在海面上产生逼真的轨迹,在操作海洋学领域中提出了一个显着的科学挑战[Rérs等,2021]。基于模型的拉格朗日轨迹数值模拟的方法依赖于使用海面速度场的分步对流程序[Lange and van Sebille,2017a]。然而,基础速度场中的微小差异或缺乏精细空间分辨率的速度场的使用可能导致Lagrangian轨迹建模不正确,从而使这些方法不切实际地用于操作应用。基于数据驱动的学习方法,例如卷积神经网络(CNN),复发性神经网络(RNN),长期记忆(LSTM)网络以及生成性模型,例如变异自动编码器(VAE)(VAES)或诸如捕获的捕获范围内的既定能力(GANS),表现出巨大的能力,表现出促成的Spat-temers Incorport [spat-tempor pender] [等,2020,Jiang等,2019,Jenkins等,2023,Julka等,2021,Dan,2020年]。然而,只有限制数量的先前研究应用于单个拉格朗日轨迹的条件模拟[Quinting and Grams,2022]。由于上述局限性,本研究的目的是提出一个原始的深度学习框架,称为漂移网,用于对海面上各个轨迹的有条件模拟。所提出的模型可以用任何包含有关海洋动力学信息的地球物理场吞噬,并在海面上产生漂移物体的轨迹。Driftnet是完全卷积的,包括对靶向轨迹的空间解释的潜在编码,这是受到漂移的Eulerian Fokker-Planck形式的启发[Botvynko等,2023年]。在此表示形式中,该轨迹是通过从条件输入字段中提取的非本地特征提取的,这意味着模拟轨迹的动力学是通过考虑周围区域的整个动力学来建模的。
尽管量子电路在量子计算中已经无处不在,但量子电路的第一个完整方程理论直到最近才引入。完整性保证量子电路上的任何真实方程都可以从方程理论中得出。我们通过两种方式改善了这种完整性结果:(i)我们通过证明可以从其余规则得出几个规则来简化方程理论。特别是,在三个最复杂的规则中,有两个被删除,第三个规则略微简化。(ii)可以将完整的方程理论扩展到带有Ancillae或Qubit的量子电路,以使用其他工作空间和混合量子计算分别表示量子计算。我们表明,在这些更具表现力的设置中可以极大地简化剩余的复杂规则,从而导致方程理论所有方程式在有限数量的Qubits上作用。为表达量子电路模型的简单和完整的方程理论的发展开辟了有关量子电路推理的新途径。它为各种编译任务提供了强大的正式基础,例如电路优化,硬件约束满意度和验证。
图2:(a)实验离子电导率的奇偶校验图对计算上的相似。红点带有液化石油气电荷,蓝色的指控带有DFT电荷。最左侧的离子电导率,使用nernst-Einstein方法计算。中心,用nernst-Einstein方法计算的离子电导率。用惠勒 - 纽曼方法计算的最直接的离子电导率。(b)实验玻璃传输温度的奇偶校验图针对计算计算的温度。金点是对纯聚合物的模拟,而绿色的聚合物与LITFSI的聚合物。(c)实验离子电导率对计算模拟的奇偶校验图,其中每个聚合物在经过验证测得的玻璃转变温度下模拟,并由玻璃转变偏移温度从纯聚合物(金)或用盐(绿色)计算的聚合物计算出的玻璃过渡偏移温度。(d)Spearman and Pearson等级相关指标,用于t exp的模拟。(e)在实验温度下模拟的最佳结果与离子电导率变化下的结果相比。
1名学生,计算机科学与工程系,IFET工程学院,印度维鲁普拉姆2号2助理教授,计算机科学与工程系,IFET工程学院,印度维卢普拉姆,摘要:AI驱动的模拟访谈系统通过虚拟互动提供现实的实践,利用ML来分析和供应的知名度和语言反应,并提供了对文化和句子的范围,并提供了对文化的个人反馈, (NLP)技术。这些NLP算法对于理解和解释候选人答案的上下文和情感语气至关重要,从而提供了对其沟通技巧的细微评估。系统使用图像处理技术来分析非语言提示。MediaPipe,一种用于检测和识别面部要点的多功能工具,可以精确地识别面部表情和运动。诸如面部检测,具有里程碑意义的检测和情感分类之类的技术用于解释这些非语言信号,从而对候选人的情绪状态和参与水平提供了见解。系统的体系结构还包括用于语音捕获和分析的组件。语音分析检查了音调,音高和语音速度,以了解响应的清晰度和情感底色。这种多模式方法结合了口头,人声和视觉数据,可确保对候选人的表现进行全面评估。整合高级技术,该系统有效地模拟并评估了访谈。关键字:Gemini(AI工具),AI(人工智能),LLM(大语言模型),ML(机器学习),NLP(自然语言处理)。
在混合现实(MR)设置中使用触觉反馈的引言是改善培训,技能学习和机器人模拟的一种新方法。随着虚拟和增强现实的发展,触摸互动已经变得越来越重要,连接物理和数字体验。触觉反馈通过创建模仿触摸的现实感觉,并有助于学习,尤其是对于复杂的任务来增强用户参与。在培训情况下,这种感官增加有助于受训者立即对其工作进行反馈,从而通过反复练习来支持技能发展。此外,机器人模拟中的触觉信号可以增强人类和机器人如何共同工作,从而创建一种对良好的远程操作和自主系统至关重要的伙伴关系。因此,在MR环境中使用触觉反馈具有改变教学方法并提高各个领域效率的许多潜力。
摘要:我们评估了未配对的图像到图像翻译网络的适用性,以纠正通过全球大气循环模型模拟的数据。我们使用无监督的图像对图像翻译(单元)神经网络体系结构来映射在以南亚季风为中心的地理区域中的HADGEM3-A-N216模型和ERA5重新分析数据之间的数据,该区域中具有充分记录的严重偏见。单位网络构建了跨变量的相关性和空间结构,但产生的偏置校正比目标分布少。通过将单位神经网络与经典的分位数映射技术(QM)相结合,我们可以制定比任何一个单独的偏差校正。单元1 QM方案显示可以纠正单个变量的跨变量相关性,空间模式和所有边际分布。对这种联合分布的仔细校正对于化合物极端研究至关重要。